Publications by authors named "Rebecca S Shapiro"

Antimicrobial-induced DNA damage, and subsequent repair via upregulation of DNA repair factors, including error-prone translesion polymerases, can lead to the increased accumulation of mutations in the microbial genome, and ultimately increased risk of acquired mutations associated with antimicrobial resistance. While this phenotype is well described in bacterial species, it is less thoroughly investigated amongst microbial fungi. Here, we monitor DNA damage induced by antifungal agents in the fungal pathogen , and find that commonly used antifungal drugs are able to induce DNA damage, leading to the upregulation of transcripts encoding predicted error-prone polymerases and related factors.

View Article and Find Full Text PDF

Azole antifungals are the main drugs used to treat fungal infections. Amino acid substitutions in the drug target Erg11 (Cyp51) are a common resistance mechanism in pathogenic yeasts. How many and which mutations confer resistance is, however, largely unknown.

View Article and Find Full Text PDF

New molecular technologies have helped unveil previously unexplored facets of the genome beyond the canonical proteome, including microproteins and short ORFs, products of alternative splicing, regulatory non-coding RNAs, as well as transposable elements, cis-regulatory DNA, and other highly repetitive regions of DNA. In this Review, we highlight what is known about this 'hidden genome' within the fungal kingdom. Using well-established model systems as a contextual framework, we describe key elements of this hidden genome in diverse fungal species, and explore how these factors perform critical functions in regulating fungal metabolism, stress tolerance, and pathogenesis.

View Article and Find Full Text PDF

Candida species are among the most prevalent causes of systemic fungal infections, which account for ∼1.5 million annual fatalities. Here, we build on a compound screen that identified the molecule N-pyrimidinyl-β-thiophenylacrylamide (NP-BTA), which strongly inhibits Candida albicans growth.

View Article and Find Full Text PDF

The overexpression of genes frequently arises in (formerly ) via gain-of-function mutations, gene duplication, or aneuploidies, with important consequences on pathogenesis traits and antifungal drug resistance. This highlights the need to develop specific genetic tools to mimic and study genetic amplification in this important fungal pathogen. Here, we report the development, validation, and applications of the first clustered regularly interspaced short palindromic repeats (CRISPR) activation (CRISPRa) system in for targeted genetic overexpression.

View Article and Find Full Text PDF

Tra1 is an essential coactivator protein of the yeast SAGA and NuA4 acetyltransferase complexes that regulate gene expression through multiple mechanisms including the acetylation of histone proteins. Tra1 is a pseudokinase of the PIKK family characterized by a C-terminal PI3K domain with no known kinase activity. However, mutations of specific arginine residues to glutamine in the PI3K domains (an allele termed tra1Q3) result in reduced growth and increased sensitivity to multiple stresses.

View Article and Find Full Text PDF

Fungal pathogens are increasingly appreciated as a significant infectious disease challenge. Compared to bacteria, fungal cells are more closely related to human cells, and few classes of antifungal drugs are available. Combination therapy offers a potential solution to reduce the likelihood of resistance acquisition and extend the lifespan of existing antifungals.

View Article and Find Full Text PDF

Rising drug resistance among pathogenic fungi, paired with a limited antifungal arsenal, poses an increasing threat to human health. To identify antifungal compounds, we screened the RIKEN natural product depository against representative isolates of four major human fungal pathogens. This screen identified NPD6433, a triazenyl indole with broad-spectrum activity against all screening strains, as well as the filamentous mold Aspergillus fumigatus.

View Article and Find Full Text PDF

The genus comprises lipid-dependent yeasts that have long been associated with common skin diseases, and have recently been linked with Crohn's disease and certain cancers. Understanding susceptibility to diverse antimicrobial agents is crucial for identifying effective antifungal therapies. Here, we tested the efficacy of isavuconazole, itraconazole, terbinafine, and artemisinin against three species: , and .

View Article and Find Full Text PDF

Catheter-associated urinary tract infections (CAUTIs) account for 40% of hospital-acquired infections (HAIs). As 20 to 50% of hospitalized patients receive catheters, CAUTIs are one of the most common HAIs, resulting in increased morbidity, mortality, and health care costs. is the second most common CAUTI uropathogen, yet relative to its bacterial counterparts, little is known about how fungal CAUTIs are established.

View Article and Find Full Text PDF

For the fungal pathogen Candida albicans, genetic overexpression readily occurs via a diversity of genomic alterations, such as aneuploidy and gain-of-function mutations, with important consequences for host adaptation, virulence, and evolution of antifungal drug resistance. Given the important role of overexpression on C. albicans biology, it is critical to develop and harness tools that enable the analysis of genes expressed at high levels in the fungal cell.

View Article and Find Full Text PDF

species are among the most prevalent causes of systemic fungal infection, posing a growing threat to public health. While Candida albicans is the most common etiological agent of systemic candidiasis, the frequency of infections caused by non species is rising. Among these is Candida auris, which has emerged as a particular concern.

View Article and Find Full Text PDF

The fungal kingdom represents an extraordinary diversity of organisms with profound impacts across animal, plant, and ecosystem health. Fungi simultaneously support life, by forming beneficial symbioses with plants and producing life-saving medicines, and bring death, by causing devastating diseases in humans, plants, and animals. With climate change, increased antimicrobial resistance, global trade, environmental degradation, and novel viruses altering the impact of fungi on health and disease, developing new approaches is now more crucial than ever to combat the threats posed by fungi and to harness their extraordinary potential for applications in human health, food supply, and environmental remediation.

View Article and Find Full Text PDF

Fungi are nature's recyclers, allowing for ecological nutrient cycling and, in turn, the continuation of life on Earth. Some fungi inhabit the human microbiome where they can provide health benefits, while others are opportunistic pathogens that can cause disease. Yeasts, members of the fungal kingdom, have been domesticated by humans for the production of beer, bread, and, recently, medicine and chemicals.

View Article and Find Full Text PDF

Fungal infections cause more than 1.5 million deaths annually. With an increase in immune-deficient susceptible populations and the emergence of antifungal drug resistance, there is an urgent need for novel strategies to combat these life-threatening infections.

View Article and Find Full Text PDF

CRISPR screens are a powerful source of biological discovery, enabling the unbiased interrogation of gene function in a wide range of applications and species. In pooled CRISPR screens, various genetically encoded perturbations are introduced into pools of cells. The targeted cells proliferate under a biological challenge such as cell competition, drug treatment or viral infection.

View Article and Find Full Text PDF

Functional genomic screening of genetic mutant libraries enables the characterization of gene function in diverse organisms. For the fungal pathogen Candida albicans, several genetic mutant libraries have been generated and screened for diverse phenotypes, including tolerance to environmental stressors and antifungal drugs, and pathogenic traits such as cellular morphogenesis, biofilm formation and host-pathogen interactions. Here, we compile and organize C.

View Article and Find Full Text PDF

Candida albicans is the most common cause of death from fungal infections. The emergence of resistant strains reducing the efficacy of first-line therapy with echinocandins, such as caspofungin calls for the identification of alternative therapeutic strategies. Tra1 is an essential component of the SAGA and NuA4 transcriptional co-activator complexes.

View Article and Find Full Text PDF

The genus encompasses a diverse group of ascomycete fungi that have captured the attention of the scientific community, due to both their role in pathogenesis and emerging applications in biotechnology; the development of gene editing tools such as CRISPR, to analyze fungal genetics and perform functional genomic studies in these organisms, is essential to fully understand and exploit this genus, to further advance antifungal drug discovery and industrial value. However, genetic manipulation of species has been met with several distinctive barriers to progress, such as unconventional codon usage in some species, as well as the absence of a complete sexual cycle in its diploid members. Despite these challenges, the last few decades have witnessed an expansion of the genetic toolbox, allowing for diverse genome editing applications that range from introducing a single point mutation to generating large-scale mutant libraries for functional genomic studies.

View Article and Find Full Text PDF

Studying life-threatening fungal pathogens such as Candida albicans is of critical importance, yet progress can be hindered by challenges associated with manipulating these pathogens genetically. CRISPR-based technologies have significantly improved our ability to manipulate the genomes of countless organisms, including fungal pathogens such as C. albicans.

View Article and Find Full Text PDF

Candida albicans is a microbial fungus that exists as a commensal member of the human microbiome and an opportunistic pathogen. Cell surface-associated adhesin proteins play a crucial role in C. albicans' ability to undergo cellular morphogenesis, develop robust biofilms, colonize, and cause infection in a host.

View Article and Find Full Text PDF

Genetic interaction (GI) analysis is a powerful genetic strategy that analyzes the fitness and phenotypes of single- and double-gene mutant cells in order to dissect the epistatic interactions between genes, categorize genes into biological pathways, and characterize genes of unknown function. GI analysis has been extensively employed in model organisms for foundational, systems-level assessment of the epistatic interactions between genes. More recently, GI analysis has been applied to microbial pathogens and has been instrumental for the study of clinically important infectious organisms.

View Article and Find Full Text PDF