Hsp100 chaperones, also known as Clp proteins, constitute a family of ring-forming ATPases that differ in 3D structure and cellular function from other stress-inducible molecular chaperones. While the vast majority of ATP-dependent molecular chaperones promote the folding of either the nascent chain or a newly imported polypeptide to reach its native conformation, Hsp100 chaperones harness metabolic energy to perform the reverse and facilitate the unfolding of a misfolded polypeptide or protein aggregate. It is now known that inside cells and organelles, different Hsp100 members are involved in rescuing stress-damaged proteins from a previously aggregated state or in recycling polypeptides marked for degradation.
View Article and Find Full Text PDFThe diploid genotypes of males are widely thought to determine sperm phenotypes, yet recent work shows that the haploid genetics of the individual sperm cell also contributes significantly. We tested seven sperm phenotypes, flagellar length and six behaviors, looking for correlations between genetic and phenotypic variability. While flagellar length appears to be controlled by the diploid genotype of the source, variation in three of the behavioral phenotypes, linearity, wobble, and progression are significantly correlated with the heterozygosity of the male producer.
View Article and Find Full Text PDFTo understand evolutionary factors that maintain complex trait variation, we sequenced genomes from a single population of the plant , identifying hundreds of nucleotide variants associated with morphological and life history traits. Alleles that delayed flowering also increased size at reproduction, which suggests pervasive antagonistic pleiotropy in this annual plant. The "large and slow" alleles, which were less common in small, rapidly flowering populations, became more abundant in populations with greater plant size.
View Article and Find Full Text PDFBackground: The phenotypes of sperm are generally believed to be under the control of the diploid genotype of the male producing them rather than their own haploid genotypes, because developing spermatids share cytoplasm through intercellular bridges. This sharing is believed to homogenize their content of gene products. However, not all developing spermatids have identical gene products and estimates are that alleles at numerous gene loci are unequally expressed in sperm.
View Article and Find Full Text PDF