Homozygous loss of function of Runx1 (Runt-related transcription factor 1 gene) during murine development results in an embryonic lethal phenotype characterized by a complete lack of definitive hematopoiesis. In light of recent reports of disparate requirements for hematopoietic transcription factors during development as opposed to adult hematopoiesis, we used a conditional gene-targeting strategy to effect the loss of Runx1 function in adult mice. In contrast with the critical role of Runx1 during development, Runx1 was not essential for hematopoiesis in the adult hematopoietic compartment, though a number of significant hematopoietic abnormalities were observed.
View Article and Find Full Text PDFTo better understand the origin of leukemic stem cells, we tested the hypothesis that all leukemia oncogenes could transform committed myeloid progenitor cells lacking the capacity for self-renewal, as has recently been reported for MLL-ENL. Flow-sorted populations of common myeloid progenitors and granulocyte-monocyte progenitors were transduced with the oncogenes MOZ-TIF2 and BCR-ABL, respectively. MOZ-TIF2-transduced progenitors could be serially replated in methylcellulose cultures and continuously propagated in liquid culture, and resulted in an acute myeloid leukemia in vivo that could be serially transplanted.
View Article and Find Full Text PDFFIP1L1-PDGFRalpha causes hypereosinophilic syndrome (HES) and is inhibited by the tyrosine kinase inhibitor imatinib (Gleevec). Imatinib is a potent inhibitor of ABL, ARG, PDGFRalpha, PDGFRbeta, and KIT and induces durable hematologic responses in HES patients. However, we observed relapse with resistance to imatinib as consequence of a T674I mutation in FIP1L1-PDGFRalpha, analogous to the imatinib-resistant T315I mutation in BCR-ABL.
View Article and Find Full Text PDF