Mitochondrial health is an integral factor in aging, with mitochondrial dysfunction known to increase with age and contribute to the development of age-related neurodegenerative disorders. Additionally, the mitochondrial genome (mtDNA) has been shown to acquire potentially damaging somatic variation as part of the aging process, while mtDNA single nucleotide polymorphism (SNPs) have been shown to be both protective and detrimental for various neurodegenerative diseases. Yet, little is known about the involvement of mtDNA variation in longevity and successful neurological aging.
View Article and Find Full Text PDFBackground: Pick's disease (PiD) is a rare and predominantly sporadic form of frontotemporal dementia that is classified as a primary tauopathy. PiD is pathologically defined by argyrophilic inclusion Pick bodies and ballooned neurons in the frontal and temporal brain lobes. PiD is characterised by the presence of Pick bodies which are formed from aggregated, hyperphosphorylated, 3-repeat tau proteins, encoded by the gene.
View Article and Find Full Text PDFDementia with Lewy bodies (DLB) is clinically diagnosed when patients develop dementia less than a year after parkinsonism onset. Age is the primary risk factor for DLB and mitochondrial health influences ageing through effective oxidative phosphorylation (OXPHOS). Patterns of stable polymorphisms in the mitochondrial genome (mtDNA) alter OXPHOS efficiency and define individuals to specific mtDNA haplogroups.
View Article and Find Full Text PDFMultiple system atrophy (MSA) is a rare sporadic, progressive parkinsonism characterised by autonomic dysfunction. A recent genome-wide association study reported an association at the Elongation of Very Long Fatty Acids Protein 7 (ELOVL7) locus with MSA risk. In the current study four independent and unrelated cohorts were assessed, consisting of pathologically confirmed MSA cases, Parkinson's disease (PD) cases, and two unrelated, healthy control groups.
View Article and Find Full Text PDFObjective: To determine whether stable polymorphisms that define mitochondrial haplogroups in mitochondrial DNA (mtDNA) are associated with Pick disease risk, we genotyped 52 pathologically confirmed cases of Pick disease and 910 neurologically healthy controls and performed case-control association analysis.
Methods: Fifty-two pathologically confirmed cases of Pick disease from Mayo Clinic Florida (n = 38) and the University of Pennsylvania (n = 14) and 910 neurologically healthy controls collected from Mayo Clinic Florida were genotyped for unique mtDNA haplogroup-defining variants. Mitochondrial haplogroups were determined, and in a case-control analysis, associations of mtDNA haplogroups with risk of Pick disease were evaluated with logistic regression models that were adjusted for age and sex.
Purpose: Investigate single nucleotide variants and short tandem repeats in 39 genes related to spinocerebellar ataxia in clinical and pathologically defined cohorts of multiple system atrophy.
Methods: Exome sequencing was conducted in 28 clinical multiple system atrophy patients to identify single nucleotide variants in spinocerebellar ataxia-related genes. Novel variants were validated in two independent disease cohorts: 86 clinically diagnosed multiple system atrophy patients and 166 pathological multiple system atrophy cases.
Introduction: Genome-wide association studies (GWAS) have confirmed the leucine-rich repeat kinase 2 (LRRK2) gene as a susceptibility locus for idiopathic Parkinson's disease (PD) in Caucasians. Though the rs1491942 and rs76904798 variants have shown the strongest associations, the causal variant(s) remains unresolved. Therefore, the aim of this study was to identify variants that may be driving the LRRK2 GWAS signal by sequencing the entire LRRK2 gene in Caucasian PD patients and controls.
View Article and Find Full Text PDFBackground: The genetic basis of variation in the progression of primary tauopathies has not been determined. We aimed to identify genetic determinants of survival in progressive supranuclear palsy (PSP).
Methods: In stage one of this two stage genome-wide association study (GWAS), we included individuals with PSP, diagnosed according to pathological and clinical criteria, from two separate cohorts: the 2011 PSP GWAS cohort, from brain banks based at the Mayo Clinic (Jacksonville, FL, USA) and in Munich (Germany), and the University College London PSP cohort, from brain banks and the PROSPECT study, a UK-wide longitudinal study of patients with atypical parkinsonian syndromes.
The microtubule-associated protein tau (MAPT) H1 haplotype is the strongest genetic risk factor for corticobasal degeneration (CBD). However, the specific H1 subhaplotype association is not well defined, and it is not clear whether any MAPT haplotypes influence severity of tau pathology or clinical presentation in CBD. Therefore, in the current study we examined 230 neuropathologically confirmed CBD cases and 1312 controls in order to assess associations of MAPT haplotypes with risk of CBD, severity of tau pathology (measured as semi-quantitative scores for coiled bodies, neurofibrillary tangles, astrocytic plaques, and neuropil threads), age of CBD onset, and disease duration.
View Article and Find Full Text PDFIntroduction: Multiple system atrophy (MSA) is a rare, sporadic, and progressive neurodegenerative disease which is characterized neuropathologically by alpha-synuclein aggregates in oligodendroglia, and clinically by parkinsonism, ataxia, and autonomic dysfunction. Mitochondrial health influences neurodegeneration and defects in mitochondria, particularly in oxidative phosphorylation, are reported in MSA. Mitochondrial DNA (mtDNA) codes for 13 critical OXPHOS proteins, however no study has investigated if mtDNA variation, in the form of mitochondrial haplogroups, influences MSA risk.
View Article and Find Full Text PDFMitochondrial health is important in ageing and dysfunctional oxidative phosphorylation (OXPHOS) accelerates ageing and influences neurodegeneration. Mitochondrial DNA (mtDNA) codes for vital OXPHOS subunits and mtDNA background has been associated with neurodegeneration; however, no study has characterised mtDNA variation in Progressive supranuclear palsy (PSP) or Corticobasal degeneration (CBD) risk or pathogenesis. In this case-control study, 910 (42.
View Article and Find Full Text PDFParkinsonism Relat Disord
September 2020
Introduction: The microtubule-associated protein tau (MAPT) gene is considered a strong genetic risk factor for Parkinson's disease (PD) in Caucasians. MAPT is located within an inversion region of high linkage disequilibrium designated as H1 and H2 haplotype, and contains eight other genes which have been implicated in neurodegeneration. The aim of the current study was to identify common coding variants in strong linkage disequilibrium (LD) within the associated loci on chr17q21 harboring MAPT.
View Article and Find Full Text PDFBackground: Intronic variant rs564309 in tripartite motif containing 11 (TRIM11) is associated with clinical phenotypic differences in progressive supranuclear palsy (PSP), whereby the minor allele (A) is more common in atypical PSP than typical PSP (PSP-Richardson's syndrome). However, rs564309 has not been investigated relative to neuropathological outcomes.
Objective: Evaluate the association of rs564309 with the neuropathologically assessed severity of tau pathology, as measured by semi-quantitative scores for neurofibrillary tangles, tufted astrocytes, neuropil threads, and oligodendroglial coiled bodies.