Publications by authors named "Rebecca Ormsby"

Article Synopsis
  • Cancers in the brain, like glioblastoma, don't respond well to treatments that work for other cancers, possibly because of the special fluid around the brain called cerebrospinal fluid (CSF).
  • Researchers studied how CSF affects brain tumor cells from 25 patients and discovered that it helps the cancer cells resist treatment.
  • They found that a protein called NUPR1 stops a deadly process in the tumor cells and that using a medicine called trifluoperazine could help kill those resistant cells without harming healthy brain cells.
View Article and Find Full Text PDF

Trinucleotide repeat disorders comprise ~20 severe, inherited, human neuromuscular and neurodegenerative disorders, which result from an abnormal expansion of repetitive sequences in the DNA. The most common of these, Huntington's disease (HD), results from expansion of the CAG repeat region in exon 1 of the gene via an unknown mechanism. Since non-coding RNAs have been implicated in the initiation and progression of many diseases, herein we focused on a circular RNA (circRNA) molecule arising from non-canonical splicing (backsplicing) of pre-mRNA.

View Article and Find Full Text PDF

Background: Aggressive primary brain tumors such as glioblastoma are uniquely challenging to treat. The intracranial location poses barriers to therapy, and the potential for severe toxicity. Effective treatments for primary brain tumors are limited, and 5-year survival rates remain poor.

View Article and Find Full Text PDF

Glioblastoma is the most common and aggressive form of primary brain cancer, with no improvements in the 5-year survival rate of 4.6% over the past three decades. T-cell-based immunotherapies such as immune-checkpoint inhibitors and chimeric antigen receptor T-cell therapy have prolonged the survival of patients with other cancers and have undergone early-phase clinical evaluation in glioblastoma patients.

View Article and Find Full Text PDF

Advances in cellular reprogramming have radically increased the use of patient-derived cells for neurological research in vitro. However, adherence of human neurons on tissue cultureware is unreliable over the extended periods required for electrophysiological maturation. Adherence issues are particularly prominent for transferable glass coverslips, hindering imaging and electrophysiological assays.

View Article and Find Full Text PDF

Background: Glioblastoma is the most aggressive type of brain cancer with high-levels of intra- and inter-tumour heterogeneity that contribute to its rapid growth and invasion within the brain. However, a spatial characterisation of gene signatures and the cell types expressing these in different tumour locations is still lacking.

Methods: We have used a deep convolutional neural network (DCNN) as a semantic segmentation model to segment seven different tumour regions including leading edge (LE), infiltrating tumour (IT), cellular tumour (CT), cellular tumour microvascular proliferation (CTmvp), cellular tumour pseudopalisading region around necrosis (CTpan), cellular tumour perinecrotic zones (CTpnz) and cellular tumour necrosis (CTne) in digitised glioblastoma histopathological slides from The Cancer Genome Atlas (TCGA).

View Article and Find Full Text PDF

Glioblastoma is one of the most common and lethal types of primary brain tumor. Despite aggressive treatment with chemotherapy and radiotherapy, tumor recurrence within 6-9 months is common. To overcome this, more effective therapies targeting cancer cell stemness, invasion, metabolism, cell death resistance and the interactions of tumor cells with their surrounding microenvironment are required.

View Article and Find Full Text PDF

Background: Organoids are a reliable model used in the study of human brain development and under pathological conditions. However, current methods for brain organoid culture generate tissues that range from 0.5 to 2 mm of size, which need to be constantly agitated to allow proper oxygenation.

View Article and Find Full Text PDF

High-throughput RNA sequencing (RNA-seq) and dedicated bioinformatics pipelines have synergized to identify an expansive repertoire of unique circular RNAs (circRNAs), exceeding 100,000 variants. While the vast majority of these circRNAs comprise canonical exonic and intronic sequences, microexons (MEs)-which occur in 30% of functional mRNA transcripts-have been entirely overlooked. CircRNAs which contain these known MEs (ME-circRNAs) could be identified with commonly utilized circRNA prediction pipelines, CIRCexplorer2 and CIRI2, but were not previously recognized as ME-circRNAs.

View Article and Find Full Text PDF

Objectives: Targeted immunotherapies such as chimeric antigen receptor (CAR)-T cells are emerging as attractive treatment options for glioblastoma, but rely on identification of a suitable tumor antigen. We validated a new target antigen for glioblastoma, fibroblast activation protein (FAP), by undertaking a detailed expression study of human samples.

Methods: Glioblastoma and normal tissues were assessed using immunostaining, supported by analyses of published transcriptomic datasets.

View Article and Find Full Text PDF

While radiotherapy is widely used in cancer treatment, the benefits can be limited by radiation-induced damage to neighboring healthy tissues. We previously demonstrated in mice that the anti-inflammatory compound dimethylaminoparthenolide (DMAPT) selectively induces radiosensitivity in prostate tumor tissue from transgenic adenocarcinoma of mouse prostate (TRAMP) mice, while simultaneously protecting healthy tissues from 6 Gy whole-body radiation-induced apoptosis. Here, we examined the radioprotective effect of DMAPT on fibrosis in normal tissues after a partial-body fractionated radiation protocol that more closely mimics the image-guided fractionated radiotherapy protocols used clinically.

View Article and Find Full Text PDF

Background/aim: The hypoglycemic drug metformin (MET) and the anti-epileptic drug valproic acid (VPA) have individually shown anti-tumor effects in prostate cancer in vitro. The present study intended to investigate the efficacy of the combination of MET and VPA in prostate cancer treatment in a pre-clinical xenograft model.

Materials And Methods: Prostate cancer cell lines (LNCaP and PC-3) were inoculated under the skin of BALB/c nude mice.

View Article and Find Full Text PDF

Despite advances in prostate cancer therapy, dissemination and growth of metastases results in shortened survival. Here we examined the potential anti-cancer effect of the NF-κB inhibitor parthenolide (PTL) and its water soluble analogue dimethylaminoparthenolide (DMAPT) on tumour progression and metastasis in the TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model of prostate cancer. Six-week-old male TRAMP mice received PTL (40 mg/kg in 10% ethanol/saline), DMAPT (100 mg/kg in sterile water), or vehicle controls by oral gavage thrice weekly until palpable tumour formation.

View Article and Find Full Text PDF

We investigated the potential of combining the hypoglycemic drug metformin (MET) and the antiepileptic drug valproic acid (VPA), which act via different biochemical pathways, to provide enhanced antitumor responses in prostate cancer. Prostate cancer cell lines (LNCaP and PC-3), normal prostate epithelial cells (PrEC), and patient-derived prostate tumor explants were treated with MET and/or VPA. Proliferation and apoptosis were assessed.

View Article and Find Full Text PDF

Radiotherapy is widely used in cancer treatment, however the benefits can be limited by radiation-induced damage to neighboring normal tissues. Parthenolide (PTL) exhibits anti-inflammatory and anti-tumor properties and selectively induces radiosensitivity in prostate cancer cell lines, while protecting primary prostate epithelial cell lines from radiation-induced damage. Low doses of radiation have also been shown to protect from subsequent high-dose-radiation-induced apoptosis as well as DNA damage.

View Article and Find Full Text PDF

The in vivo mouse transgenic pKZ1 chromosomal inversion assay is a sensitive assay that responds to very low doses of DNA-damaging agents. pKZ1 inversions are measured as the frequency of cells expressing E. coli β-galactosidase protein, which can only be produced from an inverted pKZ1 transgene.

View Article and Find Full Text PDF

The low dose radioadaptive response has been shown to be protective against high doses of radiation as well as aging-induced genomic instability. We hypothesised that a single whole-body exposure of low dose radiation would induce a radioadaptive response thereby reducing or abrogating aging-related changes in repeat element DNA methylation in mice. Following sham or 10 mGy X-irradiation, serial peripheral blood sampling was performed and differences in Long Interspersed Nucleic Element 1 (L1), B1 and Intracisternal-A-Particle (IAP) repeat element methylation between samples were assessed using high resolution melt analysis of PCR amplicons.

View Article and Find Full Text PDF

The radioprotective agent amifostine is a free radical scavenger that can protect cells from the damaging effects of ionising radiation when administered prior to radiation exposure. However, amifostine has also been shown to protect cells from chromosomal mutations when administered after radiation exposure. As apoptosis is a common mechanism by which cells with mutations are removed from the cell population, we investigated whether amifostine stimulates apoptosis when administered after radiation exposure.

View Article and Find Full Text PDF

The effects of ionizing radiation on DNA methylation are of importance due to the role that DNA methylation plays in maintaining genome stability, and the presence of aberrant DNA methylation in many cancers. There is limited evidence that radiation-sensitivity may influence the modulation of DNA methylation by ionizing radiation, resulting in a loss of methylation. The BALB/c, CBA and C57Bl/6 strains are the most commonly utilized mouse strains in radiation research and are classified as radiation sensitive (BALB/c and CBA) or radiation resistant (C57Bl/6).

View Article and Find Full Text PDF

We present here the first high resolution melt (HRM) assay to quantitatively analyze differences in murine DNA methylation levels utilizing CpG methylation of Long Interspersed Elements-1 (LINE1 or L1). By calculating the integral difference in melt temperature between samples and a methylated control, and biasing PCR primers for unmethylated CpGs, the assay demonstrates enhanced sensitivity to detect changes in methylation in a cell line treated with low doses of 5-aza-2'-deoxycytidine (5-aza). The L1 assay was confirmed to be a good marker of changes in DNA methylation of L1 elements at multiple regions across the genome when compared with total 5-methyl-cytosine content, measured by Liquid Chromatography-Mass Spectrometry (LC-MS).

View Article and Find Full Text PDF

To test whether bystander effects occur in vivo after low doses of radiation relevant to occupational and population exposure, we exposed mice to whole-body X-radiation doses (0.01 and 1 mGy) where only a proportion of cells would receive an electron track. We used a precise method to analyze the apoptosis frequency in situ in spleen tissue sections at 7 h and 1, 3 and 7 days after irradiation to determine whether an increase in apoptosis above that predicted by direct effects was observed.

View Article and Find Full Text PDF

The potential for irradiated cells to induce biological effects in their unirradiated neighbors (known as the bystander effect) has been observed repeatedly in vitro. However, whether bystander effects occur in vivo under the specific conditions relevant to low-dose radiation protection is still unclear. To test this, the fate of bystander cells in the mouse spleen was examined using an adoptive transfer method designed to replicate the rare, irradiated cells in an organ that might be expected after a low-dose-rate, low-LET radiation exposure.

View Article and Find Full Text PDF

Activation of C3 to C3b signals the start of the alternative complement pathway. The C-terminal short complement regulator (SCR)-20 domain of factor H (FH), the major serum regulator of C3b, possesses a binding site for C3d, a 35-kDa physiological fragment of C3b. Size distribution analyses of mixtures of SCR-16/20 or FH with C3d by analytical ultracentrifugation in 50 and 137 mM NaCl buffer revealed a range of discrete peaks, showing that multimeric complexes had formed at physiologically relevant concentrations.

View Article and Find Full Text PDF

Purpose: A Tyr-to-His (Y402H) sequence variant in the factor H (FH) and factor H-like protein (FHL-1) gene is strongly associated with an increased susceptibility for age-related macular degeneration (AMD). The purpose of this study was to understand how the Y402H variant in FH/FHL-1 contributes to the pathogenesis of AMD and, in particular, whether interactions mediated by FH/FHL-1, including binding to C-reactive protein (CRP), group A streptococcal M protein (GAS M6), heparin, and retinal pigment epithelial cells (RPE), are affected.

Methods: FH was purified from sera of patients homozygous for FH(Y402) or (H402), and recombinant FH fragments representing FHL-1 were generated.

View Article and Find Full Text PDF

Factor H (FH) is a plasma glycoprotein that plays a central role in regulation of the alternative pathway of complement. It is composed of 20 short complement regulator (SCR) domains. The SCR-1/5 fragment is required for decay acceleration and cofactor activity, while the SCR-16/20 fragment possesses binding sites for complement C3d and heparin.

View Article and Find Full Text PDF