Biol Psychiatry Cogn Neurosci Neuroimaging
April 2017
Background: Prevailing theories suggest that autism spectrum disorder (ASD) results from impaired brain communication, causing aberrant synchrony among neuronal populations. However, it remains debated whether synchrony abnormalities are among local or long-range circuits, are circuit specific or are generalized, reflect hypersynchrony or reflect hyposynchrony, and are frequency band-specific or are distributed across the frequency spectrum.
Methods: To help clarify these unresolved questions, we recorded spontaneous magnetoencephalography data and used a data-driven, whole-brain analysis of frequency-specific interregional synchrony in higher-functioning adolescents and adults, with 17 ASD and 18 control subjects matched on age, IQ, and sex, and equal for motion.
A central question for cognitive neuroscience is how feature-combinations that give rise to episodic/source memories are encoded in the brain. Although there is much evidence that the hippocampus (HIP) is involved in feature binding, and some evidence that other brain regions are as well, there is relatively little evidence about the nature of the resulting representations in different brain regions. We used multivoxel pattern analysis (MVPA) to investigate how feature combinations might be represented, contrasting two possibilities, feature-based versus holistic.
View Article and Find Full Text PDFEpisodic memory is characterized by remembering events as unique combinations of features. Even when some features of events overlap, we are later often able to discriminate among them. Here we ask whether hippocampally mediated reactivation of an earlier event when a similar one occurs supports subsequent memory that two similar but not identical events occurred (mnemonic discrimination).
View Article and Find Full Text PDFSoc Cogn Affect Neurosci
January 2015
Decades of research have demonstrated that a region of the right fusiform gyrus (FG) and right posterior superior temporal sulcus (pSTS) responds preferentially to static faces and biological motion, respectively. Despite this view, both regions activate in response to both stimulus categories and to a range of other stimuli, such as goal-directed actions, suggesting that these regions respond to characteristics of animate agents more generally. Here we propose a neural model for animacy detection composed of processing streams that are initially differentially sensitive to cues signaling animacy, but that ultimately act in concert to support reasoning about animate agents.
View Article and Find Full Text PDFAssessing the correspondence between spontaneous and stimulus-driven neural activity can reveal intrinsic properties of the brain. Recent studies have demonstrated that many large-scale functional networks have a similar spatial structure during spontaneous and stimulus-driven states. However, it is unknown whether the temporal dynamics of network activity are also similar across these states.
View Article and Find Full Text PDF