Introduction: Bovine respiratory disease (BRD) is a multifactorial disease complex in which bacteria in the upper respiratory tract play an important role in disease development. Previous studies have related the presence of four BRD-pathobionts (, , , and ) in the upper respiratory tract to BRD incidence and mortalities in the dairy and beef cattle industry, but these studies typically only use one time point to compare the abundance of BRD-pathobionts between apparently healthy and BRD-affected cattle. The objective of this study was to characterize the longitudinal development of the nasopharyngeal (NP) microbiome from apparently healthy calves, and in calves with clinical signs of BRD, the microbiota dynamics from disease diagnosis to recovery.
View Article and Find Full Text PDFBackground: The livestock industry is striving to identify antibiotic alternatives to reduce the need to use antibiotics. Postbiotics, such as Saccharomyces cerevisiae fermentation product (SCFP), have been studied and proposed as potential non-antibiotic growth promoters due to their effects on animal growth and the rumen microbiome; however, little is known of their effects on the hind-gut microbiome during the early life of calves. The objective of this study was to measure the effect of in-feed SCFP on the fecal microbiome of Holstein bull calves through 4 months of age.
View Article and Find Full Text PDFIt is necessary for the dairy industry to reduce calf morbidity and mortality, and the reliance on antibiotics to treat sick calves, to address the growing concern regarding antibiotic resistant bacteria. The primary objective of this study was to evaluate the effect that feeding dairy calves medium-chain fatty acids (MCFA) has on growth performance and health, and the secondary objective was to evaluate the effect of MCFA on energy status around weaning and the adaptive immune response following a vaccine challenge. Thirty-three Holstein bull calves (5 ± 1.
View Article and Find Full Text PDFBefore weaning, dairy calves are at high risk for illness, especially respiratory and digestive diseases, which reduces average daily gain, age at first calving, and first-lactation milk production. Although these illnesses are commonly treated with antibiotics, efforts are being made to reduce antibiotic use, due to concerns about antibiotic-resistant bacteria. The objective was to evaluate the effects of Saccharomyces cerevisiae fermentation products (SCFP) on the immune status of calves, following a lipopolysaccharide (LPS) challenge administered just before weaning.
View Article and Find Full Text PDFMaintaining metabolic balance is a key factor in the health of dairy cattle during the transition from pregnancy to lactation. Little is known regarding the role of the circadian timing system in the regulation of physiological changes during the transition period. We hypothesized that disruption of the cow's circadian timing system by exposure to chronic light-dark phase shifts during the prepartum period would negatively affect the regulation of homeostasis and cause metabolic disturbances, leading to reduced milk production in the subsequent lactation.
View Article and Find Full Text PDF