Publications by authors named "Rebecca Murdaugh"

Article Synopsis
  • The DNA damage response is crucial for keeping our genes intact, and its disruption is often linked to cancer development, with PPM1D acting as a key negative regulator.
  • Researchers used CRISPR/Cas9 to find vulnerabilities in cancer cells with mutations in PPM1D, identifying superoxide dismutase-1 (SOD1) as a promising target.
  • The study showed that PPM1D-mutant cells have high levels of reactive oxygen species and struggle with oxidative stress, suggesting that targeting SOD1 could be a new treatment approach for these types of cancers.
View Article and Find Full Text PDF

Hematopoietic stem cells (HSCs) are capable of regenerating the blood system, but the instructive cues that direct HSCs to regenerate particular lineages lost to the injury remain elusive. Here, we show that iron is increasingly taken up by HSCs during anemia and induces erythroid gene expression and regeneration in a Tet2-dependent manner. Lineage tracing of HSCs reveals that HSCs respond to hemolytic anemia by increasing erythroid output.

View Article and Find Full Text PDF
Article Synopsis
  • The DNA damage response is crucial for keeping our genetic material stable and its disruption is often linked to cancer development.
  • PPM1D acts as a key negative regulator of this response, and mutations in this gene have been found in various cancers, making it a potential target for new treatments.
  • Using CRISPR/Cas9 screening, researchers identified SOD1 as a promising target for cells with PPM1D mutations, showing that these cells have higher levels of reactive oxygen species and struggle with oxidative stress, indicating a new cancer therapy approach.
View Article and Find Full Text PDF

Despite improvements in cancer patient outcomes seen in the past decade, tumor resistance to therapy remains a major impediment to achieving durable clinical responses. Intratumoral heterogeneity related to genetic, epigenetic, transcriptomic, proteomic, and metabolic differences between individual cancer cells has emerged as a driver of therapeutic resistance. This cell to cell heterogeneity can be assessed using single cell profiling technologies that enable the identification of tumor cell clones that exhibit similar defining features like specific mutations or patterns of DNA methylation.

View Article and Find Full Text PDF

Early diagnosis of acute myeloid leukemia (AML) in the pre-leukemic stage remains a clinical challenge, as pre-leukemic patients show no symptoms, lacking any known morphological or numerical abnormalities in blood cells. Here, we demonstrate that platelets with structurally abnormal mitochondria emerge at the pre-leukemic phase of AML, preceding detectable changes in blood cell counts or detection of leukemic blasts in blood. We visualized frozen-hydrated platelets from mice at different time points during AML development in situ using electron cryo-tomography (cryo-ET) and identified intracellular organelles through an unbiased semi-automatic process followed by quantitative measurement.

View Article and Find Full Text PDF

Metabolic dysregulation underlies malignant phenotypes attributed to cancer stem cells, such as unlimited proliferation and differentiation blockade. Here, we demonstrate that NAD metabolism enables acute myeloid leukemia (AML) to evade apoptosis, another hallmark of cancer stem cells. We integrated whole-genome CRISPR screening and pan-cancer genetic dependency mapping to identify and as AML dependencies governing NAD biosynthesis.

View Article and Find Full Text PDF

Histone variants contribute to the complexity of the chromatin landscape and play an integral role in defining DNA domains and regulating gene expression. The histone H3 variant H3.3 is incorporated into genic elements independent of DNA replication by its chaperone HIRA.

View Article and Find Full Text PDF

Leukemia is characterized by the uncontrolled production of leukemic cells and impaired normal hematopoiesis. Although the combination of chemotherapies and hematopoietic stem cell transplantation has significantly improved the outcome of leukemia patients, a proportion of patients still suffer from relapse after treatment. Upon relapse, a phenomenon termed "lineage switch" is observed in a subset of leukemia patients, in which conversion of lymphoblastic leukemia to myeloid leukemia or is observed.

View Article and Find Full Text PDF