Type 2 diabetes mellitus (T2DM) increases the risk of many lethal and debilitating conditions. Among them, foot ulceration due to neuropathy, vascular disease, or trauma affects the quality of life of millions in the United States and around the world. Physiological wound healing is stalled in the inflammatory phase by the chronicity of inflammation without proceeding to the resolution phase.
View Article and Find Full Text PDFChronic diabetic foot ulcers (DFUs) are an important clinical issue faced by clinicians despite the advanced treatment strategies consisting of wound debridement, off-loading, medication, wound dressings, and keeping the ulcer clean. Non-healing DFUs are associated with the risk of amputation, increased morbidity and mortality, and economic stress. Neo-angiogenesis and granulation tissue formation are necessary for physiological DFU healing and acute inflammation play a key role in healing.
View Article and Find Full Text PDFDespite the advancement in the treatment, nonhealing diabetic foot ulcers (DFUs) are an important clinical issue accounting for increased morbidity and risk of amputation. Persistent inflammation, decreased granulation tissue formation, decreased neo-angiogenesis, and infections are common underlying causes of the nonhealing pattern. Fibroblasts play a critical role in granulation tissue formation and angiogenesis and mediate wound healing how fibroblasts regulate inflammation in nonhealing DFUs is a question to ponder.
View Article and Find Full Text PDFNonhealing diabetic foot ulcers (DFUs) are a continuing clinical issue despite the improved treatment with wound debridement, off-loading the ulcer, medication, wound dressings, and preventing infection by keeping the ulcer clean. Wound healing is associated with granulation tissue formation and angiogenesis favoring the wound to enter the resolution phase of healing followed by healing. However, chronic inflammation and reduced angiogenesis in a hyperglycemic environment impair the normal healing cascade and result in chronically non-healing diabetic foot ulcers.
View Article and Find Full Text PDFChronic wounds are a substantial clinical problem in diabetes and nearly 6% of diabetics suffer from foot disease including ulceration, infection, and tissue necrosis. Wound healing in diabetes is impaired and delayed and is augmented by diabetic complications. Wound healing involves complex cellular, molecular, and biochemical processes and animal models are the most suitable prototype to investigate and understand the underlying pathological changes in the process of wound healing.
View Article and Find Full Text PDFIntroduction: A persistent inflammation is perpetuated by infiltrating immune cells and cytokines secreted from these immune cells. Additionally, apoptotic keratinocytes and adipocytes in diabetes causes diabetic foot ulcer (DFU) to arrest in an inflammatory phase without progressing to the resolution phase. This leads to a nonhealing DFU and, despite advanced treatments consisting of wound debridement, off-loading the ulcer of necrotic tissue, wound dressings to keep it moist and control exudate, medication, and preventing infection, DFUs remain a clinical problem.
View Article and Find Full Text PDF