Small molecules promoting protein-protein interactions produce a range of therapeutic outcomes. Molecular glue degraders exemplify this concept due to their compact drug-like structures and ability to engage targets without reliance on existing cognate ligands. While cereblon molecular glue degraders containing glutarimide scaffolds have been approved for treatment of multiple myeloma and acute myeloid leukemia, the design of new therapeutically relevant monovalent degraders remains challenging.
View Article and Find Full Text PDFTargeted protein degradation and induced proximity refer to strategies that leverage the recruitment of proteins to facilitate their modification, regulation or degradation. As prospective design of glues remains challenging, unbiased discovery methods are needed to unveil hidden chemical targets. Here we establish a high throughput affinity purification mass spectrometry workflow in cell lysates for the unbiased identification of molecular glue targets.
View Article and Find Full Text PDFMolecular glues are proximity-inducing small molecules that have emerged as an attractive therapeutic approach. However, developing molecular glues remains challenging, requiring innovative mechanistic strategies to stabilize neoprotein interfaces and expedite discovery. Here we unveil a trans-labeling covalent molecular glue mechanism, termed 'template-assisted covalent modification'.
View Article and Find Full Text PDFSite-specific modification of amino acid residues in protein binding pockets using sulfonyl exchange chemistry expands the druggable proteome by enabling the development of covalent modulators that target residues beyond cysteine. Sulfonyl fluoride and triazole electrophiles were incorporated previously into the cereblon (CRBN) molecular glue degrader EM12, to covalently engage His353 within the CRBN sensor loop, but these probes had poor human plasma stability. Attenuation of intrinsic reactivity through the development of sulfonyl pyrazoles, imidazoles, and nucleobases enhanced plasma stability, and several compounds retained efficient labeling of His353.
View Article and Find Full Text PDFMany cereblon (CRBN) ligands have been used to develop proteolysis targeting chimeras (PROTACs), but all are reversible binders of the E3 ubiquitin ligase. We recently described the use of sulfonyl exchange chemistry to design binders that covalently engage histidine 353 in CRBN for the first time. Here we show that covalent CRBN ligands can be used to develop efficient PROTAC degraders.
View Article and Find Full Text PDFHeterobifunctional degraders, known as proteolysis targeting chimeras (PROTACs), theoretically possess a catalytic mode-of-action, yet few studies have either confirmed or exploited this potential advantage of event-driven pharmacology. Degraders of oncogenic EML4-ALK fusions were developed by conjugating ALK inhibitors to cereblon ligands. Simultaneous optimization of pharmacology and compound properties using ternary complex modeling and physicochemical considerations yielded multiple catalytic degraders that were more resilient to clinically relevant ATP-binding site mutations than kinase inhibitor drugs.
View Article and Find Full Text PDFThe ability to rapidly and selectively modulate cellular protein levels using small molecules is essential for studying complex biological systems. Degradation tags, such as dTAG, allow for selective protein removal with a specific degrader molecule, but their utility is limited by the large tag size (>12 kDa) and the low efficiency of fusion product gene knock-in. Here, we describe the development of a short 24 amino acid peptide tag that enables cell-based quantification and covalent functionalization of proteins to which it is fused.
View Article and Find Full Text PDFThe bacterial genus comprises diverse species that colonize the skin as commensals but can also cause infection. Previous work identified a family of serine hydrolases termed fluorophoshonate-binding hydrolases (Fphs) in the pathogenic bacteria , one of which, FphB, functions as a virulence factor. Using a combination of bioinformatics and activity-based protein profiling (ABPP), we identify homologues of these enzymes in the related commensal bacteria .
View Article and Find Full Text PDFCyanide fishing, where a solution of sodium or potassium cyanide is used to stun reef fish for easy capture for the marine aquarium and live fish food trades, continues to be pervasive despite being illegal in many countries and destructive to coral reef ecosystems. Currently, there is no easy, reliable and universally accepted method to detect if a fish has been exposed to cyanide during the capture process. A promising non-invasive technique for detecting thiocyanate ions, the metabolic byproduct excreted by exposed fish, has been reported in the literature.
View Article and Find Full Text PDF