Background And Objectives: Although genetic testing among children with epilepsy has demonstrated clinical utility and become a part of routine testing, studies in adults are limited. This study reports the diagnostic yield of genetic testing in adults with epilepsy.
Methods: Unrelated individuals aged 18 years and older who underwent diagnostic genetic testing for epilepsy using a comprehensive, next-generation sequencing-based, targeted gene panel (range 89-189 genes) were included in this cross-sectional study.
Discriminating the gene target of a distal regulatory element from other nearby transcribed genes is a challenging problem with the potential to illuminate the causal underpinnings of complex diseases. We present TargetFinder, a computational method that reconstructs regulatory landscapes from diverse features along the genome. The resulting models accurately predict individual enhancer-promoter interactions across multiple cell lines with a false discovery rate up to 15 times smaller than that obtained using the closest gene.
View Article and Find Full Text PDFGene-regulatory enhancers have been identified using various approaches, including evolutionary conservation, regulatory protein binding, chromatin modifications, and DNA sequence motifs. To integrate these different approaches, we developed EnhancerFinder, a two-step method for distinguishing developmental enhancers from the genomic background and then predicting their tissue specificity. EnhancerFinder uses a multiple kernel learning approach to integrate DNA sequence motifs, evolutionary patterns, and diverse functional genomics datasets from a variety of cell types.
View Article and Find Full Text PDFHeart development is exquisitely sensitive to the precise temporal regulation of thousands of genes that govern developmental decisions during differentiation. However, we currently lack a detailed understanding of how chromatin and gene expression patterns are coordinated during developmental transitions in the cardiac lineage. Here, we interrogated the transcriptome and several histone modifications across the genome during defined stages of cardiac differentiation.
View Article and Find Full Text PDFThe human gut harbors thousands of bacterial taxa. A profusion of metagenomic sequence data has been generated from human stool samples in the last few years, raising the question of whether more taxa remain to be identified. We assessed metagenomic data generated by the Human Microbiome Project Consortium to determine if novel taxa remain to be discovered in stool samples from healthy individuals.
View Article and Find Full Text PDF