The neuroendocrine hormone melatonin is associated with circadian rhythms and has antioxidant and vasodilative properties. In cattle, melatonin rescues fetal growth during maternal nutrient restriction in a seasonally dependent manner, but melatonin research in swine is limited. The objective of this study was to evaluate effects of dietary melatonin supplementation during mid to late gestation on circadian rhythm and muscle growth and development of the longissimus dorsi in utero and postnatally.
View Article and Find Full Text PDFEndometrial-derived uterine histotroph is a critical component of nutrient supply to a growing conceptus throughout gestation; however, the effect of nutritional plane on histotroph nutrient composition remains unknown in multiparous cows. We hypothesized that differing planes of nutrition would alter histotroph and serum nutrient composition in beef cattle. Thus, we evaluated serum and histotroph amino acid and glucose composition, and serum non-esterified fatty acids (NEFA) and blood urea nitrogen (BUN) in cows individually fed to maintain body weight (BW; 0 kd/d, n = 9; CON) compared with those losing moderate BW (-0.
View Article and Find Full Text PDFStress-induced fetal programming diminishes β2 adrenergic tone, which coincides with intrauterine growth restriction () and lifelong metabolic dysfunction. We determined if stimulating β2 adrenergic activity in IUGR-born lambs would improve metabolic outcomes. IUGR lambs that received daily injections of saline or the β2 agonist clenbuterol from birth to 60 days were compared with controls from pair-fed thermoneutral pregnancies.
View Article and Find Full Text PDFIntrauterine growth restriction () is associated with reduced β2 adrenergic sensitivity, which contributes to poor postnatal muscle growth. The objective of this study was to determine if stimulating β2 adrenergic activity postnatal would rescue deficits in muscle growth, body composition, and indicators of metabolic homeostasis in IUGR offspring. Time-mated ewes were housed at 40°C from day 40 to 95 of gestation to produce IUGR lambs.
View Article and Find Full Text PDFMounting evidence in the literature indicates an important role of endogenous and exogenous melatonin in driving physiological and molecular adaptations in livestock. Melatonin has been extensively studied in seasonally polyestrous animals whereby supplementation studies have been used to adjust circannual rhythms in herds of animals under abnormal photoperiodic conditions. Livestock undergo multiple metabolic and physiological adaptation processes throughout their production cycle which can result in decreased immune response leading to chronic illness, weight loss, or decreased production efficiency; however, melatonin's antioxidant capacity and immunostimulatory properties could alleviate these effects.
View Article and Find Full Text PDFIntroduction: Recent research indicates an important role in the placental fetal brain axis, with a paucity of information reported in large animals. Melatonin supplementation has been investigated as a potential therapeutic to negate fetal growth restriction. We hypothesized that maternal nutrient restriction and melatonin supplementation would alter neurotransmitter pathways in fetal blood, cotyledonary and hypothalamus tissue.
View Article and Find Full Text PDFHeat stress (HS) triggers oxidative stress, systemic inflammation, and disrupts growth efficiency of livestock. β-adrenergic agonists supplemented to ruminant livestock improve growth performance, increase skeletal muscle mass, and decrease carcass fat. The objective of this study was to understand the independent and interacting effects of HS and zilpaterol hydrochloride (ZH) supplementation on the transcriptome of subcutaneous white adipose tissue and the longissimus dorsi muscle in steers.
View Article and Find Full Text PDFIn humans and animals, intrauterine growth restriction (IUGR) results from fetal programming responses to poor intrauterine conditions. Chronic fetal hypoxemia elevates circulating catecholamines, which reduces skeletal muscle β2 adrenoceptor content and contributes to growth and metabolic pathologies in IUGR-born offspring. Our objective was to determine whether intermittent maternofetal oxygenation during late gestation would improve neonatal growth and glucose metabolism in IUGR-born lambs.
View Article and Find Full Text PDFIntrauterine stress impairs growth and metabolism in the fetus and offspring. We recently found that sustained maternofetal inflammation resulted in intrauterine growth-restricted (MI-IUGR) fetuses with asymmetric body composition, impaired muscle glucose metabolism, and β-cell dysfunction near term. These fetuses also exhibited heightened inflammatory tone, which we postulated was a fetal programming mechanism for the IUGR phenotype.
View Article and Find Full Text PDFHeat stress hinders growth and well-being in livestock, an effect that is perhaps exacerbated by the β1 agonist ractopamine. Heat stress deficits are mediated in part by reduced feed intake, but other mechanisms involved are less understood. Our objective was to determine the direct impact of heat stress on growth and well-being in ractopamine-supplemented feedlot lambs.
View Article and Find Full Text PDF