Publications by authors named "Rebecca M Reese"

Loss-of-function mutations in Nav1.7, a voltage-gated sodium channel, cause congenital insensitivity to pain (CIP) in humans, demonstrating that Nav1.7 is essential for the perception of pain.

View Article and Find Full Text PDF

Context: Positron emission tomography imaging with 2-deoxy-2-[F]-fluoro-D-glucose (FDG) is used clinically for initial staging, restaging, and assessing therapy response in breast cancer. Tumor FDG uptake in steroid hormone receptor-positive breast cancer and physiologic FDG uptake in normal breast tissue can be affected by hormonal factors such as menstrual cycle phase, menopausal status, and hormone replacement therapy.

Objective: The purpose of this study was to determine the role of the progesterone receptor (PR) in regulating glucose and FDG uptake in breast cancer cells.

View Article and Find Full Text PDF

Phosphorylation of estrogen receptor α (ER) at serine 118 (pS118-ER) is induced by estrogen and is the most abundant posttranslational mark associated with a transcriptionally active receptor. Cistromic analysis of pS118-ER from our group revealed enrichment of the GRHL2 motif near pS118-ER binding sites. In this study, we used cistromic and transcriptomic analyses to interrogate the relationship between GRHL2 and pS118-ER.

View Article and Find Full Text PDF

Transient receptor potential ankyrin 1 (TRPA1) antagonists have generated broad interest in the pharmaceutical industry for the treatment of both pain and asthma. Over the past decade, multiple antagonist classes have been reported in the literature with a wide range of structural diversity. Our own work has focused on the development of proline sulfonamide and hypoxanthine-based antagonists, two antagonist classes with distinct physicochemical properties and pharmacokinetic (PK) trends.

View Article and Find Full Text PDF
Article Synopsis
  • TRPA1 is a nonselective ion channel found in sensory neurons that plays a role in sensing various stimuli and is linked to conditions like neuropathic pain and respiratory diseases.* -
  • Researchers optimized a series of small molecule antagonists to inhibit TRPA1, discovering a new linker that enhances their effectiveness and bioavailability.* -
  • The effectiveness of one compound was tested in animal models, showing a significant reduction in inflammation, and its binding structure was elucidated using cryogenic electron microscopy.*
View Article and Find Full Text PDF

Despite the development of effective therapies, a substantial proportion of asthmatics continue to have uncontrolled symptoms, airflow limitation, and exacerbations. Transient receptor potential cation channel member A1 (TRPA1) agonists are elevated in human asthmatic airways, and in rodents, TRPA1 is involved in the induction of airway inflammation and hyperreactivity. Here, the discovery and early clinical development of GDC-0334, a highly potent, selective, and orally bioavailable TRPA1 antagonist, is described.

View Article and Find Full Text PDF

Transcriptional regulation of ESR1, the gene that encodes for estrogen receptor α (ER), is critical for regulating the downstream effects of the estrogen signaling pathway in breast cancer such as cell growth. ESR1 is a large and complex gene that is regulated by multiple regulatory elements, which has complicated our understanding of how ESR1 expression is controlled in the context of breast cancer. Early studies characterized the genomic structure of ESR1 with subsequent studies focused on identifying intrinsic (chromatin environment, transcription factors, signaling pathways) and extrinsic (tumor microenvironment, secreted factors) mechanisms that impact ESR1 gene expression.

View Article and Find Full Text PDF

The transient receptor potential (TRP) superfamily of ion channels has garnered significant attention by the pharmaceutical industry. In particular, TRP channels showing high levels of expression in sensory neurons such as TRPV1, TRPA1, and TRPM8, have been considered as targets for indications where sensory neurons play a fundamental role, such as pain, itch, and asthma. Modeling these indications in rodents is challenging, especially in mice.

View Article and Find Full Text PDF

In mammals, the grainyhead-like transcription factor (GRHL) family is composed of three nuclear proteins that are responsible for driving epithelial cell fate: GRHL1, GRHL2, and GRHL3. GRHL2 is important in maintaining proper tubulogenesis during development and in suppressing the epithelial-to-mesenchymal transition. Within the last decade, evidence indicates both tumor-suppressive and oncogenic roles for GRHL2 in various types of cancers.

View Article and Find Full Text PDF

Posttranslational modifications are key regulators of protein function, providing cues that can alter protein interactions and cellular location. Phosphorylation of estrogen receptor α (ER) at serine 118 (pS118-ER) occurs in response to multiple stimuli and is involved in modulating ER-dependent gene transcription. While the cistrome of ER is well established, surprisingly little is understood about how phosphorylation impacts ER-DNA binding activity.

View Article and Find Full Text PDF

Strong human genetic evidence points to an essential contribution of the voltage-gated sodium channel Nav1.7 to pain sensation: loss of Nav1.7 function leads to congenital insensitivity to pain, whereas gain-of-function mutations in the gene that encodes Nav1.

View Article and Find Full Text PDF

Transient receptor potential ankyrin 1 (TRPA1) is a non-selective cation channel expressed in sensory neurons where it functions as an irritant sensor for a plethora of electrophilic compounds and is implicated in pain, itch, and respiratory disease. To study its function in various disease contexts, we sought to identify novel, potent, and selective small-molecule TRPA1 antagonists. Herein we describe the evolution of an N-isopropylglycine sulfonamide lead (1) to a novel and potent (4 R,5 S)-4-fluoro-5-methylproline sulfonamide series of inhibitors.

View Article and Find Full Text PDF

Mesolimbic dopamine perturbations modulate performance of reward-seeking behavior, with tasks requiring high effort being especially vulnerable to disruption of dopamine signaling. Previous work primarily investigated long-term perturbations such as receptor antagonism and dopamine depletion, which constrain the ability to assess dopamine contributions to effort expenditure in isolation from other behavior events, such as reward consumption. Also unclear is if dopamine is required for both initiation and maintenance when a sequence of multiple instrumental responses is required.

View Article and Find Full Text PDF

The environmental context in which a discrete Pavlovian conditioned stimulus (CS) is experienced can profoundly impact conditioned responding elicited by the CS. We hypothesized that alcohol-seeking behavior elicited by a discrete CS that predicted alcohol would be influenced by context and require glutamate signaling in the basolateral amygdala (BLA). Male, Long-Evans rats were allowed to drink 15% ethanol (v/v) until consumption stabilized.

View Article and Find Full Text PDF

Neurobiological mechanisms that influence behavior in the presence of alcohol-associated stimuli involve processes that organize behavior during the presence of these cues, and separately, regulation of behavior in their absence. However, little is known about anatomical structures that might mediate this regulation. Here we examined nucleus accumbens shell (AcbSh) as a possible neural substrate mediating behavior modulation triggered by the presence and absence of alcohol-associated environmental cues and contexts.

View Article and Find Full Text PDF

Animals rely on environmental cues to identify potential rewards and select the best reward available. The orbitofrontal cortex (OFC) is proposed to encode sensory-specific representations of expected outcome. However, its contribution to the selection of a preferred outcome among different reward options is still unclear.

View Article and Find Full Text PDF

The development of alcoholism may involve a shift from goal-directed to habitual drinking. These action control systems are distinct in the dorsal striatum, with the dorsomedial striatum (DMS) important for goal-directed behavior and the dorsolateral striatum (DLS) required for habit formation. Goal-directed behavior can be modeled in rats with a fixed ratio (FR) reinforcement schedule, while a variable interval (VI) schedule promotes habitual behavior (e.

View Article and Find Full Text PDF