Publications by authors named "Rebecca M Parodi-Rullan"

Background: FDA-approved carbonic anhydrase inhibitors (CAIs) have been shown to attenuate Aβ pathology, neurodegeneration, and cerebrovascular dysfunction in models of Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA), suggesting a key role for CAs as a novel and previously unexplored target for AD therapy. Amyloid β accumulation severely impairs the cerebral neuro-signaling pathway with a progressive loss in neurotrophic factors (NTFs, i.e.

View Article and Find Full Text PDF

Background: The blood-brain barrier (BBB) is a crucial regulator of cerebral homeostasis and function. Cerebrovascular endothelial cells (EC) are important components of the BBB, and EC damage and/or dysfunction may result in defects in brain clearance and perfusion, microhemorrhages, inflammation, and neurodegeneration. In addition to EC damage resulting from the presence of amyloid-beta (Aβ) in Alzheimer's Disease (AD) and Cerebral Amyloid Angiopathy (CAA), the presence of cardiovascular risk factors (CVRF) may further exacerbate cerebrovascular function and neurodegeneration.

View Article and Find Full Text PDF

Background: Over the years, Alzheimer's Disease (AD) has been identified as a multifactorial disease, with cerebral vascular dysfunction being one of the most common and early pathological features. Vascular risk factors (VRF) are thought to further increase AD risk and pathology. Cerebral Amyloid Angiopathy (CAA) is defined as the accumulation of amyloid-beta (Aβ) on the vascular wall.

View Article and Find Full Text PDF

Alzheimer's disease (AD) includes the formation of extracellular deposits comprising aggregated β-amyloid (Aβ) fibers associated with oxidative stress, inflammation, mitochondrial abnormalities, and neuronal loss. There is an associative link between AD and cardiac diseases; however, the mechanisms underlying the potential role of AD, particularly Aβ in cardiac cells, remain unknown. Here, we investigated the role of mitochondria in mediating the effects of Aβ and Aβ in cultured cardiomyocytes and primary coronary endothelial cells.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most prevalent cause of dementia and is pathologically characterized by the presence of parenchymal senile plaques composed of amyloid β (Aβ) and intraneuronal neurofibrillary tangles of hyperphosphorylated tau protein. The accumulation of Aβ also occurs within the cerebral vasculature in over 80% of AD patients and in non-demented individuals, a condition called cerebral amyloid angiopathy (CAA). The development of CAA is associated with neurovascular dysfunction, blood-brain barrier (BBB) leakage, and persistent vascular- and neuro-inflammation, eventually leading to neurodegeneration.

View Article and Find Full Text PDF

Individual electron transport chain complexes have been shown to assemble into the supramolecular structures known as the respiratory chain supercomplexes (RCS). Several studies reported an associative link between RCS disintegration and human diseases, although the physiological role, structural integrity, and mechanisms of RCS formation remain unknown. Our previous studies suggested that the adenine nucleotide translocase (ANT), the most abundant protein of the inner mitochondrial membrane, can be involved in RCS assembly.

View Article and Find Full Text PDF

Background/aims: The mitochondrial permeability transition pore opening plays a critical role in the pathogenesis of myocardial infarction. Inhibition of cyclophilin-D (CyP-D), a key regulator of the mitochondrial permeability transition pore, has been shown to exert cardioprotective effects against ischemia-reperfusion injury on various animal models, mostly in males. However, failure of recent clinical trials requires a detailed elucidation of the cardioprotective efficacy of CyP-D inhibition.

View Article and Find Full Text PDF

A growing number of studies have demonstrated the role of post-translational modifications of proteins, particularly acetylation, in human diseases including neurodegenerative and cardiovascular diseases, diabetes, cancer, and in aging. Acetylation of mitochondrial proteins has been shown to be involved in the pathogenesis of cardiac diseases such as myocardial infarction (ischemia-reperfusion) and heart failure. Indeed, over 60% of mitochondrial proteins contain acetylation sites, and most of these proteins are involved in mitochondrial bioenergetics.

View Article and Find Full Text PDF

Sirtuins are NAD-dependent deacetylases that regulate cell metabolism through protein acetylation/deacetylation, and SIRT3 is the major deacetylase among mitochondrial isoforms. Here, we elucidated the possible role of acetylation of cyclophilin D, a key regulator of the mitochondrial permeability transition pore (mPTP), in mitochondria-mediated cardiac dysfunction induced by ischemia-reperfusion (IR) in wild type (WT) and SIRT3 knockout (SIRT3) mice. Isolated and Langendorff-mode perfused hearts of WT and SIRT3 mice were subjected to 25-min global ischemia followed by 60-min of reperfusion in the presence or absence of the mPTP inhibitor, sanglifehrin A (SfA).

View Article and Find Full Text PDF