Many nanobiotechnology applications rely on stable and efficient integration of functional biomacromolecules with synthetic nanomaterials. Unfortunately, the reasons for the ubiquitous loss of activity of immobilized enzymes remain poorly understood due to the difficulty in distinguishing between distinct molecular-level mechanisms. Here, we employ complementary single-molecule fluorescence methods that independently measure the impact of immobilization on the structure and function ( i.
View Article and Find Full Text PDFBiomimetic lipid bilayers represent intriguing materials for enzyme immobilization, which is critical for many biotechnological applications. Here, through the creation of mixed lipid bilayers, the retention of immobilized enzyme structures and catalytic activity are dramatically enhanced. The enhancement in the retention of enzyme structures, which correlated with an increase in enzyme activity, is observed using dynamic single-molecule (SM) fluorescence methods.
View Article and Find Full Text PDF