Publications by authors named "Rebecca L Stine"

Background: Limited research has focused on older prosthesis users despite the expected compounded effects of age and amputation on sensorimotor function, balance, and falls. This study compared sensorimotor factors and standing balance between older individuals with and without transtibial amputation, hypothesizing that prosthesis users would demonstrate worse sensorimotor function. Secondarily we assessed the relationship between standing balance and somatosensation in prosthesis users.

View Article and Find Full Text PDF

Purpose: Prosthesis geometry and behaviour limit the footwear options available to women. Using a commercially available prosthetic foot that permits user-alignment to accommodate shoes with different heel heights, we investigated the effect of footwear on gait kinematics, with and without adjustment for differences in heel-forefoot differential.

Materials And Methods: Three women with transtibial amputation walked at a self-selected pace, first in an athletic shoe (prosthetist-aligned; baseline condition), then (i) in a flatter shoe without realigning the prosthesis, and (ii) in flat and heeled shoes following user re-alignment.

View Article and Find Full Text PDF

Background: Current upper limb prostheses do not replace the active degrees-of-freedom distal to the elbow inherent to intact physiology. Limited evidence suggests that transradial prosthesis users demonstrate shoulder and trunk movements to compensate for these missing volitional degrees-of-freedom. The purpose of this study was to enhance understanding of the effects of prosthesis use on motor performance by comparing the movement quality of upper body kinematics between transradial prosthesis users and able-bodied controls when executing goal-oriented tasks that reflect activities of daily living.

View Article and Find Full Text PDF

Bilateral transtibial amputee (BTA) gait has been investigated less and is not as well understood compared to that of their unilateral counterparts. Relative to able-bodied individuals, BTAs walk with reduced self-selected speeds, increased step width, hip-hiking, and greater metabolic cost. The clinically observed upper body motions of these individuals have not been quantified, but appear substantially different from able-bodied ambulators and may impact upright balance.

View Article and Find Full Text PDF

Study Design And Objectives: A 3-dimensional multi-segment kinematic spine model was developed for noninvasive analysis of spinal motion during walking. Preliminary data from able-bodied ambulators were collected and analyzed using the model.

Summary Of Background Data: Neither the spine's role during walking nor the effect of surgical spinal stabilization on gait is fully understood.

View Article and Find Full Text PDF