The need to focus on immunology education has never been greater. The coronavirus disease 2019 pandemic has revealed that a significant proportion of our society is vaccine hesitant. Some of this hesitancy may stem from a general lack of understanding of how the immune system and immunological interventions work.
View Article and Find Full Text PDFAlthough immunological research has become increasingly important in recent decades for understanding infectious and immune-mediated diseases, immunological pedagogy at the undergraduate level has lagged behind in reports of evidence-based scholarship. To address the need for a renewed emphasis on immunology education and to describe the current status of undergraduate education in immunology, an online survey of instructors with experience in teaching immunology was conducted. The survey investigated the effects of instructors' level of teaching experience, target student population, and course components on the emphasis given to certain immunology subtopics in their courses.
View Article and Find Full Text PDFFEMS Microbiol Lett
February 2017
Biology education is undergoing a transformation toward a more student-centered, inquiry-driven classroom. Many educators have designed engaging assignments that are designed to help undergraduate students gain exposure to the scientific process and data analysis. One of these types of assignments is use of a grant proposal assignment.
View Article and Find Full Text PDFEscherichia coli must be able to survive extreme acidic conditions. We were interested in determining the role of the inner membrane protein YhiM in survival in acidic conditions. Previous data demonstrated that the yhiM gene was upregulated in acidic conditions (Tucker et al.
View Article and Find Full Text PDFMurine gammaherpesvirus 68 (gammaHV68, MHV-68)-specific CD4 T cells control gammaHV68 infection by reducing the frequency of latently infected cells and by inhibiting viral replication. We have previously demonstrated that CD4 T cells do not require CD8 T or B cells to control gammaHV68 replication, demonstrating a helper-independent activity of CD4 T cells during gammaHV68 infection. The effector mechanism(s) required for this helper-independent function of CD4 T cells and for the inhibition of the establishment of latency by CD4 T cells are not known.
View Article and Find Full Text PDFStrategies to prime CD8(+) T cells against Murine gammaherpesvirus 68 (gammaHV68; MHV68) latency have, to date, resulted in only limited effects. While early forms of latency (<21 days) were significantly reduced, effects were not seen at later times, indicating loss of control by the primed CD8(+) T cells. In the present study, we evaluated CD8(+) T cells in an optimized system, consisting of OTI T-cell-receptor (TCR) transgenic mice, which generate clonal CD8(+) T cells specific for K(b)-SIINFEKL of OVA, and a recombinant gammaHV68 that expresses OVA (gammaHV68.
View Article and Find Full Text PDFCD4 T cells are important for control of infection with murine gammaherpesvirus 68 (gamma HV68), but it is not known whether CD4 T cells function via provision of help to other lymphocyte subsets, such as B cells and CD8 T cells, or have an independent antiviral function. Moreover, under conditions of natural infection, the CD4 T-cell response is not sufficient to eliminate infection. To determine the functional capacities of CD4 T cells under optimal or near-optimal conditions and to determine whether CD4 T cells can control gamma HV68 infection in the absence of CD8 T cells or B cells, we studied the effect of ovalbumin (OVA)-specific CD4 T cells on infection with a recombinant gamma HV68 that expresses OVA.
View Article and Find Full Text PDF