Tracking wood formation in semiarid regions during the seasonal march of precipitation extremes has two important applications. It can provide (i) insight into the adaptive capacities of trees to drought and (ii) a basis for a richer interpretation of tree-ring data, assisting in a deeper understanding of past and current climate. In the southwestern USA, the anatomical signature of seasonally bimodal precipitation is the 'false ring'-a band of latewood-like cells in the earlywood.
View Article and Find Full Text PDFTrees play a key role in the global hydrological cycle and measurements performed with the thermal dissipation method (TDM) have been crucial in providing whole-tree water-use estimates. Yet, different data processing to calculate whole-tree water use encapsulates uncertainties that have not been systematically assessed. We quantified uncertainties in conifer sap flux density (F ) and stand water use caused by commonly applied methods for deriving zero-flow conditions, dampening and sensor calibration.
View Article and Find Full Text PDFA long-standing ambition in ecosystem science has been to understand the relationship between ecosystem community composition, structure and function. Differential water use and hydraulic redistribution have been proposed as one mechanism that might allow for the coexistence of overstory woody plants and understory grasses. Here, we investigated how patterns of hydraulic redistribution influence overstory and understory ecophysiological function and how patterns vary across timescales of an individual precipitation event to an entire growing season.
View Article and Find Full Text PDFWhile photovoltaic (PV) renewable energy production has surged, concerns remain about whether or not PV power plants induce a "heat island" (PVHI) effect, much like the increase in ambient temperatures relative to wildlands generates an Urban Heat Island effect in cities. Transitions to PV plants alter the way that incoming energy is reflected back to the atmosphere or absorbed, stored, and reradiated because PV plants change the albedo, vegetation, and structure of the terrain. Prior work on the PVHI has been mostly theoretical or based upon simulated models.
View Article and Find Full Text PDFCompetition for seeds has a major influence on the evolution of granivores and the plants on which they rely. The complexity of interactions and coevolutionary relationships vary across forest types. The introduction of non-native granivores has considerable potential to alter seed dispersal dynamics.
View Article and Find Full Text PDF