Changes in diet are a challenge to the gastrointestinal tract which needs to alter its processing mechanisms to continue to process nutrients and maintain health. In particular, the enteric nervous system (ENS) needs to adapt its motor and secretory programs to deal with changes in nutrient type and load in order to optimise nutrient absorption.The nerve circuits in the gut are complex, and the numbers and types of neurons make recordings of specific cell types difficult, time-consuming, and prone to sampling errors.
View Article and Find Full Text PDFThe role of melatonin in the gastrointestinal (GI) tract had previously been limited to its well-described anti-oxidant properties. Recent studies have, however, expanded the role of melatonin in the intestine, showing that it acts as a hormone with local paracrine actions to modulate GI function and the release of other hormones. The GI epithelium produces melatonin from the active precursor serotonin, which is thought to come from the serotonin synthesising enterochromaffin cells (EC).
View Article and Find Full Text PDFAims: Microdomain signalling mechanisms underlie key aspects of artery function and the modulation of intracellular calcium, with transient receptor potential (TRP) channels playing an integral role. This study determines the distribution and role of TRP canonical type 3 (C3) channels in the control of endothelium-derived hyperpolarization (EDH)-mediated vasodilator tone in rat mesenteric artery.
Methods And Results: TRPC3 antibody specificity was verified using rat tissue, human embryonic kidney (HEK)-293 cells stably transfected with mouse TRPC3 cDNA, and TRPC3 knock-out (KO) mouse tissue using western blotting and confocal and ultrastructural immunohistochemistry.
Myoendothelial microdomain signaling via localized calcium-activated potassium channel (K(Ca)) and gap junction connexins (Cx) is critical for endothelium-dependent vasodilation in rat mesenteric artery. The present study determines the relative contribution of NO and gap junction-K(Ca) mediated microdomain signaling to endothelium-dependent vasodilation in human mesenteric artery. The hypothesis tested was that such activity is due to NO and localized K(Ca) and Cx activity.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
March 2010
Serotonin (5-HT)-containing enterochromaffin (EC) cells of the intestine transduce chemical and mechanical stimuli from the intestinal lumen by releasing 5-HT on to afferent nerve terminals. Dysfunctional mucosal 5-HT signaling has been implicated in heightened visceral sensitivity and altered motility in patients with inflammatory bowel disease and in animal models. Our aim was to characterize the release and uptake of 5-HT in the mouse dextran sulfate sodium (DSS; 5% wt/vol) model of colitis.
View Article and Find Full Text PDFThe afferent innervation of the gastrointestinal (GI) tract consists of intrinsic and extrinsic sensory neurons that respond to nutrients, chemicals or mechanical stimuli within the gut lumen. Most stimuli do not interact directly with the afferent nerves but instead activate specialised cells in the epithelium in a process of sensory transduction. It is thought that one of the first steps in this process is the release of serotonin (5-HT) from the enterochromaffin (EC) cells.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
December 2008
Serotonin (5-HT) is released from the enterochromaffin cells and plays an important role in regulating intestinal function. Although the release of 5-HT is well documented, the contribution of the serotonin reuptake transporter (SERT) to the levels and actions of 5-HT in the intestine is unclear. This study aimed to demonstrate real-time SERT activity in ileal mucosa and to assess the effects of SERT inhibition using fluoxetine.
View Article and Find Full Text PDFThe movements of the gastrointestinal tract, as described by Walter B. Cannon 100 years ago, reveal much about the functions of this unique organ and how it is controlled by the body. Two classic papers by Cannon provide a rare glimpse into the hidden functions of the body and give students a great example of the scientific method in action.
View Article and Find Full Text PDF