Publications by authors named "Rebecca L Allen"

Oomycete pathogens cause diverse plant diseases. To successfully colonize their hosts, they deliver a suite of effector proteins that can attenuate plant defenses. In the oomycete downy mildews, effectors carry a signal peptide and an RxLR motif.

View Article and Find Full Text PDF

The RPP13 [recognition of Hyaloperonospora arabidopsidis (previously known as Peronospora parasitica)] resistance (R) gene in Arabidopsis thaliana exhibits the highest reported level of sequence diversity among known R genes. Consistent with a co-evolutionary model, the matching effector protein ATR13 (A. thaliana-recognized) from H.

View Article and Find Full Text PDF
Article Synopsis
  • - RPP13 is a highly variable resistance gene in Arabidopsis that interacts with ATR13, a protein from the pathogenic downy mildew, indicating a coevolution between the host and pathogen proteins.
  • - ATR13 has five distinct functional domains, and while the RXLR motif is important for transport into plant cells, it isn't necessary for recognition by RPP13.
  • - Research identified key amino acids in ATR13's structure that are crucial for recognition by RPP13, specifically a required threonine residue and modulating roles for arginine and glutamic acid in recognition specificity.
View Article and Find Full Text PDF

The perception of downy mildew avirulence (Arabidopsis thaliana Recognized [ATR]) gene products by matching Arabidopsis thaliana resistance (Recognition of Peronospora parasitica [RPP]) gene products triggers localized cell death (a hypersensitive response) in the host plant, and this inhibits pathogen development. The oomycete pathogen, therefore, is under selection pressure to alter the form of these gene products to prevent detection. That the pathogen maintains these genes indicates that they play a positive role in pathogen survival.

View Article and Find Full Text PDF

Plants are constantly exposed to attack by an array of diverse pathogens but lack a somatically adaptive immune system. In spite of this, natural plant populations do not often suffer destructive disease epidemics. Elucidating how allelic diversity within plant genes that function to detect pathogens (resistance genes) counteracts changing structures of pathogen genes required for host invasion (pathogenicity effectors) is critical to our understanding of the dynamics of natural plant populations.

View Article and Find Full Text PDF

SUMMARY Peronospora parasitica is an obligate biotrophic oomycete that causes downy mildew in Arabidopsis thaliana and Brassica species. Our goal is to identify P. parasitica (At) genes that are involved in pathogenicity.

View Article and Find Full Text PDF

In Peronospora parasitica (At) (downy mildew), the genetic determinants of cultivar-specific recognition by Arabidopsis thaliana are the Arabidopsis thaliana-recognised (ATR) avirulence genes. We describe the identification of 10 amplified fragment length polymorphism (AFLP) markers that define a genetic mapping interval for the ATR1Nd avirulence allele, the presence of which is perceived by the RPP1Nd resistance gene. Furthermore, we have constructed a P.

View Article and Find Full Text PDF