Tissue engineering heavily relies on cell-seeded scaffolds to support the complex biological and mechanical requirements of a target organ. However, in addition to safety and efficacy, translation of tissue engineering technology will depend on manufacturability, affordability, and ease of adoption. Therefore, there is a need to develop scalable biomaterial scaffolds with sufficient bioactivity to eliminate the need for exogenous cell seeding.
View Article and Find Full Text PDFPeripheral nerve and large-scale muscle injuries result in significant disability, necessitating the development of biomaterials that can restore functional deficits by promoting tissue regrowth in an electroactive environment. Among these materials, graphene is favored for its high conductivity, but its low bioactivity requires enhancement through biomimetic components. In this study, we extrusion printed graphene-poly(lactide-co-glycolide) (graphene) lattice scaffolds, aiming to increase bioactivity by incorporating decellularized extracellular matrix (dECM) derived from mouse pup skeletal muscle.
View Article and Find Full Text PDFTissue engineering heavily relies on cell-seeded scaffolds to support the complex biological and mechanical requirements of a target organ. However, in addition to safety and efficacy, translation of tissue engineering technology will depend on manufacturability, affordability, and ease of adoption. Therefore, there is a need to develop scalable biomaterial scaffolds with sufficient bioactivity to eliminate the need for exogenous cell seeding.
View Article and Find Full Text PDFConductive polymers (CPs) are widely studied for their ability to influence a myriad of tissue systems. While their mixed ionic/electronic conductivity is commonly considered the primary driver of these benefits, the mechanisms by which CPs influence cell fate remain unclear. In this study, CP-biomaterial interactions are investigated using collagen, due to its widespread prevalence throughout the body and in tissue engineering constructs.
View Article and Find Full Text PDFMyocardial infarction (MI) is one of the leading causes of death and disability. Recently developed cardiac patches provide mechanical support and additional conductive paths to promote electrical signal propagation in the MI area to synchronize cardiac excitation and contraction. Cardiac patches based on conductive polymers offer attractive features; however, the modest levels of elasticity and high impedance interfaces limit their mechanical and electrical performance.
View Article and Find Full Text PDFImpaired wound healing is a common complication for diabetic patients and effective diabetic wound management remains a clinical challenge. Furthermore, a significant problem that contributes to patient morbidity is the suboptimal quality of healed skin, which often leads to reoccurring chronic skin wounds. Herein, a novel compound and biomaterial building block, panthenol citrate (PC), is developed.
View Article and Find Full Text PDF3D-printed hydrogel scaffolds functionalized with conductive polymers have demonstrated significant potential in regenerative applications for their structural tunability, physiochemical compatibility, and electroactivity. Controllably generating conductive hydrogels with fine features, however, has proven challenging. Here, micro-continuous liquid interface production (μCLIP) method is utilized to 3D print poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogels.
View Article and Find Full Text PDFIntroduction: Conducting polymers (CPs) have demonstrated promise for promoting tissue repair, yet their ability to facilitate cartilage regeneration has yet to be thoroughly investigated. Integrating CPs into common scaffolds for tissue regeneration, such as collagen, would enable mechanistic studies on the potential for CPs to promote cartilage repair. Here, we combine absorbable collagen sponges (ACS) with the CP PEDOT-S and show that the PEDOT-S-collagen composite (PEDOT-ACS) has enhanced chondrogenic potential compared to the collagen sponge alone.
View Article and Find Full Text PDFThe member of Rho family of small GTPases Cdc42 plays important and conserved roles in cell polarity and motility. The Cdc42ep family proteins have been identified to bind to Cdc42, yet how they interact with Cdc42 to regulate cell migration remains to be elucidated. In this study, we focus on Cdc42ep1, which is expressed predominantly in the highly migratory neural crest cells in frog embryos.
View Article and Find Full Text PDF