Renewal of the catecholamine-secreting chromaffin cell population of the adrenal medulla is necessary for physiological homeostasis throughout life. Definitive evidence for the presence or absence of an adrenomedullary stem cell has been enigmatic. In this work, we demonstrate that a subset of sustentacular cells endowed with a support role, are in fact adrenomedullary stem cells.
View Article and Find Full Text PDFDespite the prevalence of sequencing data in biomedical research, the methylome remains underrepresented. Given the importance of DNA methylation in gene regulation and disease, it is crucial to address the need for reliable differential methylation methods. This work presents a novel, transferable approach for extracting information from DNA methylation data.
View Article and Find Full Text PDFNucleotide sequences along a gene provide instructions to transcriptional and cotranscriptional machinery allowing genome expansion into the transcriptome. Nucleotide sequence can often be shared between two genes and in some occurrences, a gene is located completely within a different gene; these are known as host/nested gene pairs. In these instances, if both genes are transcribed, overlap can result in a transcriptional crosstalk where genes regulate each other.
View Article and Find Full Text PDFClin Epigenetics
December 2023
Background: Phaeochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumours. Pathogenic variants have been identified in more than 15 susceptibility genes; associated tumours are grouped into three Clusters, reinforced by their transcriptional profiles. Cluster 1A PPGLs have pathogenic variants affecting enzymes of the tricarboxylic acid cycle, including succinate dehydrogenase.
View Article and Find Full Text PDFJ Clin Endocrinol Metab
November 2023
Context: Somatic EPAS1 variants account for 5% to 8% of all pheochromocytoma and paragangliomas (PPGL) but are detected in over 90% of PPGL in patients with congenital cyanotic heart disease, where hypoxemia may select for EPAS1 gain-of-function variants. Sickle cell disease (SCD) is an inherited hemoglobinopathy associated with chronic hypoxia and there are isolated reports of PPGL in patients with SCD, but a genetic link between the conditions has yet to be established.
Objective: To determine the phenotype and EPAS1 variant status of patients with PPGL and SCD.
The mammalian genome is depleted in CG dinucleotides, except at protected regions where they cluster as CpG islands (CGIs). CGIs are gene regulatory hubs and serve as transcription initiation sites and are as expected, associated with gene promoters. Advances in genomic annotations demonstrate that a quarter of CGIs are found within genes.
View Article and Find Full Text PDFDopa decarboxylase (DDC) synthesizes serotonin in the developing mouse heart where it is encoded by , a tissue-specific paternally expressed imprinted gene. shares an imprinting control region (ICR) with the imprinted, maternally expressed (outside of the central nervous system) gene on mouse chromosome 11, but little else is known about the tissue-specific imprinted expression of . Fluorescent immunostaining localizes DDC to the developing myocardium in the pre-natal mouse heart, in a region susceptible to abnormal development and implicated in congenital heart defects in human.
View Article and Find Full Text PDFZbtb11 is a conserved transcription factor mutated in families with hereditary intellectual disability. Its precise molecular and cellular functions are currently unknown, precluding our understanding of the aetiology of this disease. Using a combination of functional genomics, genetic and biochemical approaches, here we show that Zbtb11 plays essential roles in maintaining the homeostasis of mitochondrial function.
View Article and Find Full Text PDFIn 1993, Denise Barlow proposed that genomic imprinting might have arisen from a host defense mechanism designed to inactivate retrotransposons. Although there were few examples at hand, she suggested that there should be maternal-specific and paternal-specific factors involved, with cognate imprinting boxes that they recognized; furthermore, the system should build on conserved biochemical factors, including DNA methylation, and maternal control should predominate for imprints. Here, we revisit this hypothesis in the light of recent advances in our understanding of host defense and DNA methylation and in particular, the link with Krüppel-associated box-zinc finger (KRAB-ZF) proteins.
View Article and Find Full Text PDFThe endocardium interacts with the myocardium to promote proliferation and morphogenesis during the later stages of heart development. However, the role of the endocardium in early cardiac ontogeny remains under-explored. Given the shared origin, subsequent juxtaposition, and essential cell-cell interactions of endocardial and myocardial cells throughout heart development, we hypothesized that paracrine signaling from the endocardium to the myocardium is crucial for initiating early differentiation of myocardial cells.
View Article and Find Full Text PDFGenomic imprinting is essential for development and growth and plays diverse roles in physiology and behaviour. Imprinted genes have traditionally been studied in isolation or in clusters with respect to cis-acting modes of gene regulation, both from a mechanistic and evolutionary point of view. Recent studies in mammals, however, reveal that imprinted genes are often co-regulated and are part of a gene network involved in the control of cellular proliferation and differentiation.
View Article and Find Full Text PDFGenetic heterogeneity presents a significant challenge for the identification of monogenic disease genes. Whole-exome sequencing generates a large number of candidate disease-causing variants and typical analyses rely on deleterious variants being observed in the same gene across several unrelated affected individuals. This is less likely to occur for genetically heterogeneous diseases, making more advanced analysis methods necessary.
View Article and Find Full Text PDFCCCTC-binding factor (CTCF) is the major protein involved in insulator activity in vertebrates, with widespread DNA binding sites in the genome. CTCF participates in many processes related to global chromatin organization and remodeling, contributing to the repression or activation of gene transcription. It is also involved in epigenetic reprogramming and is essential during gametogenesis and embryo development.
View Article and Find Full Text PDFDevelopmental programming links growth in early life with health status in adulthood. Although environmental factors such as maternal diet can influence the growth and adult health status of offspring, the genetic influences on this process are poorly understood. Using the mouse as a model, we identify the imprinted gene Grb10 as a mediator of nutrient supply and demand in the postnatal period.
View Article and Find Full Text PDFDNA binding factors are essential for regulating gene expression. CTCF and cohesin are DNA binding factors with central roles in chromatin organization and gene expression. We determined the sites of CTCF and cohesin binding to DNA in mouse brain, genome wide and in an allele-specific manner with high read-depth ChIP-seq.
View Article and Find Full Text PDFGerm cells and adult stem cells maintain tissue homeostasis through a finely tuned program of responses to both physiological and stress-related signals. PLZF (Promyelocytic Leukemia Zinc Finger protein), a member of the POK family of transcription factors, acts as an epigenetic regulator of stem cell maintenance in germ cells and haematopoietic stem cells. We identified L1 retrotransposons as the primary targets of PLZF.
View Article and Find Full Text PDFWhat good are transposable elements (TEs)? Although their activity can be harmful to host genomes and can cause disease, they nevertheless represent an important source of genetic variation that has helped shape genomes. In this review, we examine the impact of TEs, collectively referred to as the mobilome, on the transcriptome. We explore how TEs-particularly retrotransposons-contribute to transcript diversity and consider their potential significance as a source of small RNAs that regulate host gene transcription.
View Article and Find Full Text PDFIn this issue of Molecular Cell, Seisenberger et al. (2012) refine DNA methylation mapping to interrogate the epigenetic reprogramming of primordial germ cells, defining the timings of methylation loss, linking to pluripotency, and identifying potential routes to transgenerational epigenetic inheritance.
View Article and Find Full Text PDFIdentifying loci with parental differences in DNA methylation is key to unraveling parent-of-origin phenotypes. By conducting a MeDIP-Seq screen in maternal-methylation free postimplantation mouse embryos (Dnmt3L-/+), we demonstrate that maternal-specific methylation exists very scarcely at midgestation. We reveal two forms of oocyte-specific methylation inheritance: limited to preimplantation, or with longer duration, i.
View Article and Find Full Text PDFIn mammals, most somatic cells contain two copies of each autosomal gene, one inherited from each parent. When a gene is expressed, both parental alleles are usually transcribed. However, a subset of genes is subject to the epigenetic silencing of one of the parental copies by genomic imprinting.
View Article and Find Full Text PDFAlternative polyadenylation increases transcriptome diversity by generating multiple transcript isoforms from a single gene. It is thought that this process can be subject to epigenetic regulation, but few specific examples of this have been reported. We previously showed that the Mcts2/H13 locus is subject to genomic imprinting and that alternative polyadenylation of H13 transcripts occurs in an allele-specific manner, regulated by epigenetic mechanisms.
View Article and Find Full Text PDF