Background: Existing models of Ebola virus infection have not fully characterized the pathophysiology of shock in connection with daily virologic, clinical, and immunologic parameters. We implemented a nonhuman primate critical care model to investigate these associations.
Methods: Two rhesus macaques received a target dose of 1000 plaque-forming units of Ebola virus intramuscularly with supportive care initiated on day 3.
Severe liver impairment is a well-known hallmark of Ebola virus disease (EVD). However, the role of hepatic involvement in EVD progression is understudied. Medical imaging in established animal models of EVD (e.
View Article and Find Full Text PDFOngoing Ebola virus disease outbreaks in the Democratic Republic of the Congo follow the largest recorded outbreak in Western Africa (2013-2016). To combat outbreaks, testing of medical countermeasures (therapeutics or vaccines) requires a well-defined, reproducible, animal model. Here we present Ebola virus disease kinetics in 24 Chinese-origin rhesus monkeys exposed intramuscularly to a highly characterized, commercially available Kikwit Ebola virus Filovirus Animal Non-Clinical Group (FANG) stock.
View Article and Find Full Text PDFFor inhalational studies and aerosol exposures to viruses, head-out plethysmography acquisition has been traditionally used for the determination of estimated inhaled dose in anesthetized nonhuman primates prior to or during an aerosol exposure. A pressure drop across a pneumotachograph is measured within a sealed chamber during inspiration/exhalation of the nonhuman primate, generating respiratory values and breathing frequencies. Due to the fluctuation of depth of anesthesia, pre-exposure respiratory values can be variable, leading to less precise and accurate dosing calculations downstream.
View Article and Find Full Text PDF