Publications by authors named "Rebecca J Nesbitt"

Background: Following anterior cruciate ligament injury and subsequent reconstruction transverse plane tibiofemoral rotation becomes underconstrained and overconstrained, respectively. Conflicting reports exist on how rotations influence loading at the knee. This investigation aimed to determine the mechanical effects of internal and external tibial rotation offsets on knee kinematics and ligament strains during in vitro simulations of in vivo recorded kinematics.

View Article and Find Full Text PDF

Cadaveric simulation models allow researchers to study native tissues in situ. However, as tests are conducted using donor specimens with unmatched kinematics, techniques that impose population average motions are subject to deviation from true physiologic conditions. This study aimed to identify factors which explain the kinetic variability observed during robotic simulations of a single human gait motion using a sample of human cadaver knees.

View Article and Find Full Text PDF

Background: Anterior cruciate ligament (ACL) injures incur over USD 2 billion in annual medical costs and prevention has become a topic of interest in biomechanics. However, literature conflicts persist over how knee rotations contribute to ACL strain and ligament injury. To maximize the efficacy of ACL injury prevention, the effects of underlying mechanics need to be better understood.

View Article and Find Full Text PDF

Limb asymmetry is a known factor for increased ACL injury risk. These asymmetries are normally observed during in vivo testing. Prior studies have developed in vitro testing methodologies driven by in vivo kinematics to investigate knee mechanics relative to ACL injury.

View Article and Find Full Text PDF

Background: Tibial slope angle is a nonmodifiable risk factor for anterior cruciate ligament (ACL) injury. However, the mechanical role of varying tibial slopes during athletic tasks has yet to be clinically quantified.

Purpose: To examine the influence of posterior tibial slope on knee joint loading during controlled, in vitro simulation of the knee joint articulations during athletic tasks.

View Article and Find Full Text PDF

ACL injury rates are greater in female athletes than their male counterparts. As female athletes are at increased risk, it is important to understand the underlying mechanics that contribute to this sex bias. The purpose of this investigation was to employ a robotic manipulator to simulate male and female kinematics from athletic tasks on cadaveric specimens and identify sex-based mechanical differences relative to the ACL loading.

View Article and Find Full Text PDF

Robotic testing offers researchers the opportunity to quantify native tissue loads for the structures of the knee joint during activities of daily living. These loads may then be translated into design requirements for future treatments and procedures to combat the early onset of knee degeneration following an injury. However, high knee loads during testing have the potential to deflect a robotic end effector and cause inaccuracies in the applied kinematics.

View Article and Find Full Text PDF

Background: The medial collateral (MCL) and anterior cruciate ligaments (ACL) are, respectively, the primary and secondary ligamentous restraints against knee abduction, which is a component of the valgus collapse often associated with ACL rupture during athletic tasks. Despite this correlation in function, MCL ruptures occur concomitantly in only 20% to 40% of ACL injuries.

Hypothesis/purpose: The purpose of this investigation was to determine how athletic tasks load the knee joint in a manner that could lead to ACL failure without concomitant MCL failure.

View Article and Find Full Text PDF

Six degree of freedom (6-DOF) robotic manipulators have simulated clinical tests and gait on cadaveric knees to examine knee biomechanics. However, these activities do not necessarily emulate the kinematics and kinetics that lead to anterior cruciate ligament (ACL) rupture. The purpose of this study was to determine the techniques needed to derive reproducible, in vitro simulations from in vivo skin-marker kinematics recorded during simulated athletic tasks.

View Article and Find Full Text PDF

Knee soft tissue structures are frequently injured, leading to the development of osteoarthritis even with treatment. Understanding how these structures contribute to knee function during activities of daily living (ADLs) is crucial in creating more effective treatments. This study was designed to determine the role of different knee structures during a simulated ADL in both human knees and ovine stifle joints.

View Article and Find Full Text PDF

Current surgical treatments for common knee injuries do not restore the normal biomechanics. Among other factors, the abnormal biomechanics increases the susceptibility to the early onset of osteoarthritis. In pursuit of improving long term outcome, investigators must understand normal knee kinematics and corresponding joint and anterior cruciate ligament (ACL) kinetics during the activities of daily living.

View Article and Find Full Text PDF