Bulbar function in spinal muscular atrophy has been defined as the ability to meet nutritional needs by mouth while maintaining airway protection and communicate verbally. The effects of disease-modifying treatment on bulbar function are not clear. A multidisciplinary team conducted post-hoc analyses of phase 3 SPR1NT trial data to evaluate bulbar function of infants at risk for spinal muscular atrophy who received one-time gene replacement therapy (onasemnogene abeparvovec) before symptom onset.
View Article and Find Full Text PDFBackground: Improvement and maintenance of bulbar function are goals of disease-modifying treatments for spinal muscular atrophy (SMA). Lack of standardized measures and a widely accepted definition of bulbar function represents a gap in SMA care.
Objective: A multidisciplinary team conducted post-hoc analyses of pooled data from one phase 1 (START) and two phase 3 (STR1VE-US, STR1VE-EU) studies to define and evaluate bulbar function of infants with SMA type 1 after receiving one-time gene replacement therapy, onasemnogene abeparvovec.
This is the second half of a two-part document updating the standard of care recommendations for spinal muscular atrophy published in 2007. This part includes updated recommendations on pulmonary management and acute care issues, and topics that have emerged in the last few years such as other organ involvement in the severe forms of spinal muscular atrophy and the role of medications. Ethical issues and the choice of palliative versus supportive care are also addressed.
View Article and Find Full Text PDFSpinal muscular atrophy (SMA) is a severe neuromuscular disorder due to a defect in the survival motor neuron 1 (SMN1) gene. Its incidence is approximately 1 in 11,000 live births. In 2007, an International Conference on the Standard of Care for SMA published a consensus statement on SMA standard of care that has been widely used throughout the world.
View Article and Find Full Text PDFObjective: To examine the impact of fasting and glucose tolerance on selected metabolic variables in children with spinal muscular atrophy (SMA) type II in a well state, secondary to reports of glucose regulation abnormalities in SMA.
Study Design: In this prospective pilot study, 6 children aged 7-11 years with SMA type II participated in an oral glucose tolerance test and a supervised medical fast during 2 overnight visits at the University of Utah. At baseline, a dual-energy x-ray absorptiometry scan was performed to determine body composition.
Proactive nutritional management for children with spinal muscular atrophy type I can provide insight into improved spinal muscular atrophy care. This observational study consisted of a nutritional and medical history survey of children with spinal muscular atrophy type I collected in 2009-2011. Forty-four caregiver survey responses were evaluated using descriptive statistics.
View Article and Find Full Text PDFChildren with type I spinal muscular atrophy commonly demonstrate reduced bone mineral density. Our objectives were to evaluate and assess adequacy of vitamin D intake, serum levels, and association with bone mineral density. Assessments were completed using 3-day food records and dual energy x-ray absorptiometry scans.
View Article and Find Full Text PDFClinical experience supports a critical role for nutrition in patients with spinal muscular atrophy (SMA). Three-day dietary intake records were analyzed for 156 visits in 47 SMA type I patients, 25 males and 22 females, ages 1month to 13years (median 9.8months) and compared to dietary reference intakes for gender and age along with anthropometric measures and dual-energy X-ray absorptiometry (DEXA) data.
View Article and Find Full Text PDF