Publications by authors named "Rebecca Hanes"

Economically viable production of biobased products and fuels requires high-yielding, high-quality, sustainable process-advantaged crops, developed using bioengineering or advanced breeding approaches. Understanding which crop phenotypic traits have the largest impact on biofuel economics and sustainability outcomes is important for the targeted feedstock crop development. Here, we evaluated biomass yield and cell-wall composition traits across a large natural variant population of switchgrass (.

View Article and Find Full Text PDF

The United States has begun unprecedented efforts to decarbonize all sectors of the economy by 2050, requiring rapid deployment of variable renewable energy technologies and grid-scale energy storage. Pumped storage hydropower (PSH) is an established technology capable of providing grid-scale energy storage and grid resilience. There is limited information about the life cycle of greenhouse gas emissions associated with state-of-the-industry PSH technologies.

View Article and Find Full Text PDF

Reductive catalytic fractionation (RCF) is a promising approach to fractionate lignocellulose and convert lignin to a narrow product slate. To guide research towards commercialization, cost and sustainability must be considered. Here we report a techno-economic analysis (TEA), life cycle assessment (LCA), and air emission analysis of the RCF process, wherein biomass carbohydrates are converted to ethanol and the RCF oil is the lignin-derived product.

View Article and Find Full Text PDF

Allocation is required when a life cycle contains multi-functional processes. One approach to allocation is to partition the embodied resources in proportion to a criterion, such as product mass or cost. Many practitioners apply multiple partitioning criteria to avoid choosing one arbitrarily.

View Article and Find Full Text PDF

A simple microfluidic device (MFD) has been developed to perform multiple color and crystal tests for controlled substance analysis. The MFD method uses less sample and reagents and generates less waste than traditional spot plate methods while performing several tests simultaneously. This methodology provides significantly more analytical information for a single sample analysis.

View Article and Find Full Text PDF