The crystal structure of the monomeric vanadium(III) species mer-[V(bipy)Cl(3)(MeCN)] (1; bipy = 2,2'-bipyridine) is reported. The solvothermal reaction of [V(bipy)Cl(3)(MeCN)]with Na(O(2)CPh) yields the T-shaped cluster [V(3)(O)Cl(3)(O(2)CPh)(2)(bipy)(2)(OEt)(2)], magnetic studies of which show strong intramolecular antiferromagnetic coupling giving a well isolated S = 1 ground state. Solvothermal treatment of 1 with triols yields a series of polymetallic clusters [V(4)Cl(6)(thme)(2)(bipy)(3)], [V(3)Cl(4)(Hcht)(2)(bipy)(2)]Cl and [V(8)(OH)(2)Cl(4)(cht)(4)(O(2)CPh)(6)(bipy)(2)], structurally related to previously reported {M(4)} centred triangles.
View Article and Find Full Text PDFA family of planar disc-like hexa-, octa- and decametallic Ni(II) complexes exhibit dominant ferromagnetic exchange. The deca- and octametallic clusters [Ni(II) (10)(tmp)(2)(N(3))(8)(acac)(6)(MeOH)(6)] (1, H(3)tmp=1,1,1-tris(hydroxymethyl)propane; acac=acetylacetonate) and [Ni(II) (8)(thme)(2)(O(2)CPh)(4)(Cl)(6)(MeCN)(6)(H(2)O)(2)] (2, H(3)thme=1,1,1-tris(hydroxymethyl)ethane) represent rare examples of Ni(II)-based single-molecule magnets, and [Ni(II) (10)] (1) possesses the largest barrier to magnetisation reversal of any Ni(II) single-molecule magnet to date.
View Article and Find Full Text PDFThe new mono-dentate ligands, 2-(2-aminoethyl)-N-phthalimido-pyridine () and 8-amino-N-phthalimido-quinoline (), were synthesised using a solvent-free melt method. These ligands together with (3-amino-N-phthalimido-pyridine; 3-aminomethyl-N-phthalimido-pyridine; 4-aminomethyl-N-phthalimido-pyridine; 3-amino-N-phthalimido-quinoline) were then used to access six luminescent Au(I) complexes of the generic type {Ph(3)P-Au-L(n)}(OTf). X-Ray crystallography has been used to structurally characterise three of the complexes showing that in the cases of and the complexes adopt an approximately linear P-Au-N coordination geometry.
View Article and Find Full Text PDFThe synthesis, crystal structures, and magnetic properties are reported for a redox family of butterfly-type tetrametallic vanadium alkoxide clusters, namely [V2(VO)2(acac)4(RC{CH2O}3)2] (R=Me 1, Et 2, CH2OH 3), [V2(VO)2(acac)2(O2CPh)2(MeC{CH2O}3)2] (5), [(VO)4(MeOH)2(O2CPh)2({HOCH2}C{CH2O}3)2] (6), [V4Cl2(dbm)4(RC{CH2OH}3)2] (R=Me 7, Et 8, CH2OH 9), and [V4Cl2(dbm)4(MeO)6] (10). The cluster cores are {VIV4} (6), {VIII2VIV2} (1-5), and {VIII4} (7-10), with examples of both isomeric forms of the of the mixed-valence cores (either VIII or VIV ions forming the butterfly body). Magnetic studies reveal the clusters to be dominated by antiferromagnetic exchange interactions in each case.
View Article and Find Full Text PDFWith the help of a bis(beta-diketonate) ligand, a family of robust molecules is formed, all consisting of two [Mn(III)4] subunits that interact slightly magnetically with each other, through two bridging pyrazine ligands.
View Article and Find Full Text PDFA family of high nuclearity oxo(alkoxo)vanadium clusters in unprecedentedly low oxidation states is reported, synthesised from simple vanadium diketonate precursors in alcohols under solvothermal conditions. Crystal structures of [V18(O)12(OH)2(H2O)4(EtO)22(O2CPh)6(acac)2] (1), [V16Na2(O)18(EtO)16(EtOH)2(O2CPh)6(HO2CPh)2]infinity (2), [V13(O)13(EtO)15(EtOH)(RCO2)3] in which R=adamantyl (3) or Ph3C (4), and [V11(O)12(EtO)13(EtOH)(Ph3CCO2)2(MePO3)] (5) are reported, revealing these to be {VIII 16VIV 2} (1), {VIII 9VIV 3VV} (3 and 4) and {VIII 3VIV 8} (5) clusters, while 2 consists of isolated {VIII 8VIV 8} clusters bridged into polymeric chains by {Na2(OEt)2} fragments. Solvothermal conditions are essential to the formation of these species, and the level of oxidation of the isolated clusters is in part controlled by the crystallisation time, with the lowest mean-oxidation-state species being isolated by direct crystallisation on controlled cooling of the reaction solutions.
View Article and Find Full Text PDFWe report the synthesis, by solvothermal methods, of the tetradecametallic cluster complexes [M14(L)6O6(OMe)18Cl6] (M=FeIII, CrIII) and [V14(L)6O6(OMe)18Cl6-xOx] (L=anion of 1,2,3-triazole or derivative). Crystal structure data are reported for the {M14} complexes [Fe14(C2H2N3)6O6(OMe)18Cl6], [Cr14(bta)6O6(OMe)18Cl6] (btaH=benzotriazole), [V14O6(Me2bta)6(OMe)18Cl6-xOx] [Me2btaH=5,6-Me2-benzotriazole; eight metal sites are VIII, the remainder are disordered between {VIII-Cl}2+ and {VIV=O}2+] and for the distorted [FeIII14O9(OH)(OMe)8(bta)7(MeOH)5(H2O)Cl8] structure that results from non-solvothermal synthetic methods, highlighting the importance of temperature regime in cluster synthesis. Magnetic studies reveal the {Fe14} complexes to have ground state electronic spins of S
The synthesis, crystal structure and preliminary magnetic studies are reported for a very highly reduced, VIV8VIII2, polyoxo(alkoxo)vanadate with a unique square prismatic topology.
View Article and Find Full Text PDFThe synthesis of the probe complex . and photophysical studies in aqueous media are described. .
View Article and Find Full Text PDFThe solvothermal synthesis, crystal structure and preliminary magnetic studies are reported of the first high nuclearity V(III)-based polyoxo(alkoxo)vanadium cage, a V(III)16V(IV)2 complex.
View Article and Find Full Text PDFThe new pro-ligand 4-methyl-4'-(carbonylamino(2-(tert-butoxycarbonylamino)ethyl))-2,2'-bipyridyl (L1) has been prepared and used to synthesise the complex fac-Re(I)Cl(CO)3(L1) 1 and the complex salts [M(II)(bipy)2(L1)](PF6)2 (M=RuII 8 or OsII 15). Deprotection with trifluoroacetic acid affords the amine-functionalised derivatives fac-Re(I)Cl(CO)3(L2) 2, [M(II)(bipy)2(L2)](PF6)2 (M=RuII 9 or OsII 16) which react with the dianhydride of diethylenetriamine pentaacetic acid (DTPA) to give the binuclear complex {fac-Re(I)Cl(CO)3}2(L3) 3 and the complex salts [{M(II)(bipy)2}2(L3)](PF6)4 (M = RuII 10 or OsII 17). The latter react with salts Ln(OTf)3 to afford a series of 12 heterotrimetallic compounds that contain a lanthanide (Ln) ion in the DTPA binding site; {fac-Re(I)Cl(CO)3}2(L3)LnIII (Ln=Nd 4, Er 5, Yb 6 or Y 7) and [{M(II)(bipy)2}2(L3)LnIII](PF6)(OTf)3 (M=RuII, Ln=Nd 11, Er 12, Yb 13 or Y 14; M=OsII, Ln=Nd 18, Er 19, Yb 20 or Y 21).
View Article and Find Full Text PDFThe synthesis and structure of new heterometallic wheels are reported, with preliminary studies of selected compounds.
View Article and Find Full Text PDFWe report the syntheses, structures and magnetic properties of two decametallic Ni(II) clusters with unprecedented supertetrahedral cores, stabilised by the (hitherto unobserved) micro(6)-coordination modes of the tris-alkoxides [MeC(CH(2)O)(3)](3-) and [C(6)H(9)O(3)](3-).
View Article and Find Full Text PDFSuperheating alcohol solutions of simple trimetallic vanadium(III) precursors gives the octa- and decametallic vanadium(III) clusters [V(8)(OEt)(8)(OH)(4)(O(2)CPh)(12)] (1) and [V(10)(OMe)(20)(O(2)CMe)(10)] (2). Cluster 2 is the largest vanadium(III) cluster synthesised to date. Thus solvothermal synthetic techniques are an excellent route to high-nuclearity vanadium(III) clusters.
View Article and Find Full Text PDF