Publications by authors named "Rebecca Glarin"

Introduction: Regular aerobic exercise is associated with improved cognitive function, implicating it as a strategy to reduce dementia risk. This is reinforced by the association between greater cardiorespiratory fitness and larger brain volume, superior cognitive performance and lower dementia risk. However, the optimal aerobic exercise dose, namely the intensity and mode of delivery, to improve brain health and lower dementia risk has received less attention.

View Article and Find Full Text PDF

Negative self-beliefs are a core feature of psychopathology, encompassing both negative appraisals about oneself directly (i.e. self-judgment) and negative inferences of how the self is appraised by others (i.

View Article and Find Full Text PDF

Purpose: A new class of asymmetric adiabatic radiofrequency (RF) pulses, Hybrid Adiabatic Pulse with asYmmetry (HAPY), is designed to be used as the labeling pulse for Pulsed Arterial Spin labeling (PASL) at 7T to reduce overall specific absorption rate (SAR) while maintaining high labeling efficiency with and inhomogeneities.

Methods: Realistic and distributions were extracted from multiple in vivo scans. The proposed class of asymmetric pulses was parameterized and optimized considering these conditions.

View Article and Find Full Text PDF

Core regions of the salience network (SN), including the anterior insula (aINS) and dorsal anterior cingulate cortex (dACC), coordinate rapid adaptive changes in attentional and autonomic processes in response to negative emotional events. In doing so, the SN incorporates bottom-up signals from subcortical brain regions, such as the amygdala and periaqueductal gray (PAG). However, the precise influence of these subcortical regions is not well understood.

View Article and Find Full Text PDF

Visual snow syndrome (VSS) is a neurological disorder characterized by a range of continuous visual disturbances. Little is known about the functional pathological mechanisms underlying VSS and their effect on brain network topology, studied using high-resolution resting-state (RS) 7 T MRI. Forty VSS patients and 60 healthy controls underwent RS MRI.

View Article and Find Full Text PDF

Visual snow syndrome is a neurological condition characterized by continuous visual disturbance and a range of non-visual symptoms, including tinnitus and migraine. Little is known about the pathological mechanisms underlying visual snow syndrome. Here, we assessed brain morphometry and microstructure in visual snow syndrome patients using high-resolution structural and quantitative MRI.

View Article and Find Full Text PDF

Safety learning generates associative links between neutral stimuli and the absence of threat, promoting the inhibition of fear and security-seeking behaviors. Precisely how safety learning is mediated at the level of underlying brain systems, particularly in humans, remains unclear. Here, we integrated a novel Pavlovian conditioned inhibition task with ultra-high field (7 Tesla) fMRI to examine the neural basis of safety learning in 49 healthy participants.

View Article and Find Full Text PDF

Objective: This study aimed to determine whether the visual response to flickering checkerboard patterns measured using electroencephalography (EEG) relate to excitatory or inhibitory metabolite levels measured using ultra-high (7Tesla/7T) magnetic resonance spectroscopy (MRS).

Background: Electrophysiological studies have shown altered visual cortical response amplitudes and contrast gain responses to high contrast flickering patterns in people with migraine. These contrast response anomalies have been argued to represent an imbalance between cortical inhibition and excitation, however the specific mechanism has not been elucidated.

View Article and Find Full Text PDF

The brain's "default mode network" (DMN) enables flexible switching between internally and externally focused cognition. Precisely how this modulation occurs is not well understood, although it may involve key subcortical mechanisms, including hypothesized influences from the basal forebrain (BF) and mediodorsal thalamus (MD). Here, we used ultra-high field (7 T) functional magnetic resonance imaging to examine the involvement of the BF and MD across states of task-induced DMN activity modulation.

View Article and Find Full Text PDF

Negative self-beliefs are a core feature of psychopathology. Despite this, we have a limited understanding of the brain mechanisms by which negative self-beliefs are cognitively restructured. Using a novel paradigm, we had participants use Socratic questioning techniques to restructure negative beliefs during ultra-high resolution 7-Tesla functional magnetic resonance imaging (UHF 7 T fMRI) scanning.

View Article and Find Full Text PDF

Great attention is being paid to solving, or mitigating, the technical problems associated with MRI at ultrahigh field strengths of 7 T and higher. This paper explores the use of the semiadiabatic spin-echo (SA-SE) pulse sequence, which uses semiadiabatic radiofrequency (RF) pulses to remove and/or mitigate the effects of the nonuniform B excitation field and B inhomogeneity associated with the electromagnetic properties of the human brain. A semiadiabatic RF pulse version of the recently published serial transmit excitation pulse (STEP) RF pulse sequence is also presented that now incorporates semiadiabatic pulses, henceforth is called SA-STEP.

View Article and Find Full Text PDF

Threat learning elicits robust changes across multiple affective domains, including changes in autonomic indices and subjective reports of fear and anxiety. It has been argued that the underlying causes of such changes may be dissociable at a neural level, but there is currently limited evidence to support this notion. To address this, we examined the neural mediators of trial-by-trial skin conductance responses (SCR), and subjective reports of anxious arousal and valence in participants (n = 27; 17 females) performing a threat reversal task during ultra-high field functional magnetic resonance imaging.

View Article and Find Full Text PDF

Pain perception can be powerfully influenced by an individual's expectations and beliefs. Although the cortical circuitry responsible for pain modulation has been thoroughly investigated, the brainstem pathways involved in the modulatory phenomena of placebo analgesia and nocebo hyperalgesia remain to be directly addressed. This study used ultra-high-field 7 tesla functional MRI (fMRI) to accurately resolve differences in brainstem circuitry present during the generation of placebo analgesia and nocebo hyperalgesia in healthy human participants ( = 25, 12 male).

View Article and Find Full Text PDF

Multiple sclerosis is a neuroinflammatory disease of the CNS that is associated with significant irreversible neuro-axonal loss, leading to permanent disability. There is thus an urgent need for markers of axonal loss for use in patient monitoring or as end-points for trials of neuroprotective agents. Advanced diffusion MRI can provide markers of diffuse loss of axonal fibre density or atrophy within specific white matter pathways.

View Article and Find Full Text PDF

Purpose: We aimed to image the optic nerve, subarachnoid space and optic nerve sheath in emmetropes and myopes ultra-high field (7-Tesla) magnetic resonance imaging (MRI). We targeted the retrobulbar distance of approximately 3 mm behind the eyeball, an area of clinical interest because of optic nerve sheath distensibility and pressure-related enlargement.

Methods: Eleven emmetropes (+0.

View Article and Find Full Text PDF

Introduction: Stroke is a common cause of epilepsy that may be mediated via glutamate dysregulation. There is currently no evidence to support the use of antiseizure medications as primary prevention against poststroke epilepsy. Perampanel has a unique antiglutamatergic mechanism of action and may have antiepileptogenic properties.

View Article and Find Full Text PDF

Upper and lower limb impairments are common in people with multiple sclerosis (pwMS), yet difficult to clinically identify in early stages of disease progression. Tasks involving complex motor control can potentially reveal more subtle deficits in early stages, and can be performed during functional MRI (fMRI) acquisition, to investigate underlying neural mechanisms, providing markers for early motor progression. We investigated brain activation during visually guided force matching of hand or foot in 28 minimally disabled pwMS (Expanded Disability Status Scale (EDSS) < 4 and pyramidal and cerebellar Kurtzke Functional Systems Scores ≤ 2) and 17 healthy controls (HC) using ultra-high field 7-Tesla fMRI, allowing us to visualise sensorimotor network activity in high detail.

View Article and Find Full Text PDF

Purpose: Quantitative susceptibility mapping (QSM) is a novel MR technique that allows mapping of tissue susceptibility values from MR phase images. QSM is an ill-conditioned inverse problem, and although several methods have been proposed in the field, in the presence of a wide range of susceptibility sources, streaking artifacts appear around high susceptibility regions and contaminate the whole QSM map. QSMART is a post-processing pipeline that uses two-stage parallel inversion to reduce the streaking artifacts and remove banding artifact at the cortical surface and around the vasculature.

View Article and Find Full Text PDF

Quantitative susceptibility mapping (QSM) provides a valuable MRI contrast mechanism that has demonstrated broad clinical applications. However, the image reconstruction of QSM is challenging due to its ill-posed dipole inversion process. In this study, a new deep learning method for QSM reconstruction, namely xQSM, was designed by introducing noise regularization and modified octave convolutional layers into a U-net backbone and trained with synthetic and in vivo datasets, respectively.

View Article and Find Full Text PDF

Ultrahigh-field (7T) MRI provides improved contrast and a signal-to-noise gain compared with lower magnetic field strengths. Here, we demonstrate feasibility and optimization of anatomic imaging of the eye and orbit using a dedicated commercial multichannel transmit and receive eye coil. Optimization of participant setup techniques and MRI sequence parameters allowed for improvements in the image resolution and contrast, and the eye and orbit coverage with minimal susceptibility and motion artifacts in a clinically feasible protocol.

View Article and Find Full Text PDF

Ultra-high field MRI offers many opportunities to expand the applications of MRI. In order for this to be realized, the technical problems associated with MRI at field strengths of 7 T and greater need to be solved or mitigated. This paper explores the use of new variations of composite RF pulses, named serial transmit excitation pulses (STEP), in contrast to parallel pulse techniques, in order to remove and/or mitigate the effects of non-uniform B excitation fields associated with the subject (eg the human brain).

View Article and Find Full Text PDF

Na provides the second strongest MR-observable signal in biological tissue and exhibits bi-exponential T relaxation in micro-environments such as the brain. There is significant interest in developing Na biomarkers for neurological diseases that are associated with sodium channel dysfunction such as multiple sclerosis and epilepsy. We have previously reported methods for acquisition of multi-echo sodium MRI and continuous distribution modelling of sodium relaxation properties as surrogate markers of brain microstructure.

View Article and Find Full Text PDF

Purpose: To demonstrate simultaneous T -weighted imaging, T mapping, mapping, SWI, and QSM from a single multi-echo (ME) MP2RAGE acquisition.

Methods: A single-echo (SE) MP2RAGE sequence at 7 tesla was extended to ME with 4 bipolar gradient echo readouts. T -weighted images and T maps calculated from individual echoes were combined using sum of squares and averaged, respectively.

View Article and Find Full Text PDF

Introduction: Diffuse gliomas are incurable malignancies, which undergo inevitable progression and are associated with seizure in 50-90% of cases. Glutamate has the potential to be an important glioma biomarker of survival and local epileptogenicity if it can be accurately quantified noninvasively.

Methods: We applied the glutamate-weighted imaging method GluCEST (glutamate chemical exchange saturation transfer) and single voxel MRS (magnetic resonance spectroscopy) at 7 Telsa (7 T) to patients with gliomas.

View Article and Find Full Text PDF