Publications by authors named "Rebecca E Rugo"

Mitotic homologous recombination (HR) is a critical pathway for the accurate repair of DNA double strand breaks (DSBs) and broken replication forks. While generally error-free, HR can occur between misaligned sequences, resulting in deleterious sequence rearrangements that can contribute to cancer and aging. To learn more about the extent to which HR occurs in different tissues during the aging process, we used Fluorescent Yellow Direct Repeat (FYDR) mice in which an HR event in a transgene yields a fluorescent phenotype.

View Article and Find Full Text PDF

Homologous recombination can induce tumorigenic sequence rearrangements. Here, we show that persistent hyper-recombination can be induced following exposure to a bifunctional alkylating agent, mitomycin C (MMC), and that the progeny of exposed cells induce a hyper-recombination phenotype in unexposed neighboring cells. Residual damage cannot be the cause of delayed recombination events, since recombination is observed after drug and template damage are diluted over a million-fold.

View Article and Find Full Text PDF

A number of phenotypes persist in the progeny of irradiated cells for many generations including delayed reproductive death, cell transformation, genomic instability, and mutations. It appears likely that persistent phenotypes are inherited by an epigenetic mechanism, although very little is known about the nature of such a mechanism or how it is established. One hypothesis is that radiation causes a heritable increase in oxy-radical activity.

View Article and Find Full Text PDF

A transgenic mouse has been created that provides a powerful tool for revealing genetic and environmental factors that modulate mitotic homologous recombination. The fluorescent yellow direct-repeat (FYDR) mice described here carry two different copies of expression cassettes for truncated coding sequences of the enhanced yellow fluorescent protein (EYFP), arranged in tandem. Homologous recombination between these repeated elements can restore full-length EYFP coding sequence to yield a fluorescent phenotype, and the resulting fluorescent recombinant cells are rapidly quantifiable by flow cytometry.

View Article and Find Full Text PDF