Multiple myeloma (MM) is a neoplasia of B plasma cells that often induces bone pain. However, the mechanisms underlying myeloma-induced bone pain (MIBP) are mostly unknown. Using a syngeneic MM mouse model, we show that periosteal nerve sprouting of calcitonin gene-related peptide (CGRP) and growth associated protein 43 (GAP43) fibers occurs concurrent to the onset of nociception and its blockade provides transient pain relief.
View Article and Find Full Text PDFLytic bone disease remains a life-altering complication of multiple myeloma, with up to 90% of sufferers experiencing skeletal events at some point in their cancer journey. This tumour-induced bone disease is driven by an upregulation of bone resorption (via increased osteoclast (OC) activity) and a downregulation of bone formation (via reduced osteoblast (OB) activity), leading to phenotypic osteolysis. Treatments are limited, and currently exclusively target OCs.
View Article and Find Full Text PDFMultiple myeloma (MM) is a bone marrow neoplasia that causes bone pain in 70% patients. While preclinical models of MM have suggested that both nerve sprouting and nerve injury may be causative for the pain, there is a lack of clinical data. Thus, the primary aims of this clinical study are: (1) to provide a deep characterization of the subjective experience of pain and quality of life in MM patients; (2) to investigate disturbances in the bone innervation of MM patients.
View Article and Find Full Text PDFClin Gastroenterol Hepatol
July 2017
Background & Aims: Gastrostomies are widely used to provide long-term enteral nutrition to patients with neurologic conditions that affect swallowing (eg, following a cerebrovascular accident or for patients with motor neuron disease) or with oropharyngeal malignancies. The benefits derived from this intervention are uncertain for patients and caregivers. We conducted a prospective, multicenter cohort study to determine how gastrostomies affect health-related quality of life (HRQoL) in recipients and caregivers.
View Article and Find Full Text PDFMetal-on-metal hip replacement (MOMHR) using large diameter bearings has become a popular alternative to conventional total hip arthroplasty, but is associated with elevated local tissue and circulating levels of chromium (Cr) and cobalt (Co) ions that may affect bone health. We examined the effects of acute and chronic exposure to these metals on human osteoblast and osteoclast formation and function over a clinically relevant concentration range previously reported in serum and within hip synovial fluid in patients after MOMHR. SaOS-2 cells were cultured with Co(2+), Cr(3+) and Cr(6+) for 3 days after which an MTS assay was used to assess cell viability, for 13 days after which alkaline phosphatase and cell viability were assessed and for 21 days after which nodule formation was assessed.
View Article and Find Full Text PDF