Core-shell colloids make attractive feedstocks for three-dimensional (3D) printing mixed oxide glass materials because they enable synthetic control of precursor dimensions and compositions, improving glass fabrication precision. Toward that end, we report the design and use of core-shell germania-silica (GeO-SiO) colloids and their use as precursors to fabricate GeO-SiO glass monoliths by direct ink write (DIW) 3D printing. By this method, GeO colloids were prepared in solution using sol-gel chemistry and formed oblong, raspberry-like agglomerates with ∼15 nm diameter primary particles that were predominantly amorphous but contained polycrystalline domains.
View Article and Find Full Text PDFWe demonstrate an additive manufacturing approach to produce gradient refractive index glass optics. Using direct ink writing with an active inline micromixer, we three-dimensionally print multimaterial green bodies with compositional gradients, consisting primarily of silica nanoparticles and varying concentrations of titania as the index-modifying dopant. The green bodies are then consolidated into glass and polished, resulting in optics with tailored spatial profiles of the refractive index.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2020
Direct ink writing (DIW) three-dimensional (3D) printing provides a revolutionary approach to fabricating components with gradients in material properties. Herein, we report a method for generating colloidal germania feedstock and germania-silica inks for the production of optical quality germania-silica (GeO-SiO) glasses by DIW, making available a new material composition for the development of multimaterial and functionally graded optical quality glasses and ceramics by additive manufacturing. Colloidal germania and silica particles are prepared by a base-catalyzed sol-gel method and converted to printable shear-thinning suspensions with desired viscoelastic properties for DIW.
View Article and Find Full Text PDFSilica inks are developed, which may be 3D printed and thermally processed to produce optically transparent glass structures with sub-millimeter features in forms ranging from scaffolds to monoliths. The inks are composed of silica powder suspended in a liquid and are printed using direct ink writing. The printed structures are then dried and sintered at temperatures well below the silica melting point to form amorphous, solid, transparent glass structures.
View Article and Find Full Text PDFConvergent Polishing is a novel polishing system and method for finishing flat and spherical glass optics in which a workpiece, independent of its initial shape (i.e., surface figure), will converge to final surface figure with excellent surface quality under a fixed, unchanging set of polishing parameters in a single polishing iteration.
View Article and Find Full Text PDFWe demonstrate the use of a microfluidic stagnation point flow to trap and extend single molecules of double-stranded (ds) genomic DNA for detection of target sequences along the DNA backbone. Mutant EcoRI-based fluorescent markers are bound sequence-specifically to fluorescently labeled ds lambda-DNA. The marker-DNA complexes are introduced into a microfluidic cross slot consisting of flow channels that intersect at ninety degrees.
View Article and Find Full Text PDFWe have created a fluorescent marker using a mutant EcoRI restriction endonuclease (K249C) that enables prolonged, direct visualization of specific sequences on genomic lengths of double-stranded (ds) DNA. The marker consists of a biotinylated enzyme, attached through the biotin-avidin interaction to a fluorescent nanosphere. Control over biotin position with respect to the enzyme's binding pocket is achieved by biotinylating the mutant EcoRI at the mutation site.
View Article and Find Full Text PDF