Chronic prostate inflammation in patients with benign prostate hyperplasia (BPH) correlates with the severity of symptoms. How inflammation contributes to prostate enlargement and/or BPH symptoms and the underlying mechanisms remain unclear. In this study, we utilize a unique transgenic mouse model that mimics chronic non-bacterial prostatitis in men and investigate the impact of inflammation on androgen receptor (AR) in basal prostate stem cells (bPSC) and their differentiation in vivo.
View Article and Find Full Text PDFThe majority of patients with benign prostate hyperplasia (BPH) exhibit chronic prostate inflammation and the extent of inflammation correlates with the severity of symptoms. How inflammation contributes to prostate enlargement and/or BPH symptoms and the underlying mechanisms are not clearly understood. We established a unique mouse model Prostate Ovalbumin Expressing Transgenic 3 (POET3) that mimics chronic non-bacterial prostatitis in men to study the role of inflammation in prostate hyperplasia.
View Article and Find Full Text PDFThe genetic and molecular basis of heterosis has long been studied but without a consensus about mechanism. The opposite effect, inbreeding depression, results from repeated self-pollination and leads to a reduction in vigor. A popular explanation for this reaction is the homozygosis of recessive, slightly deleterious alleles upon inbreeding.
View Article and Find Full Text PDFSwitchgrass () is a native prairie grass and valuable bio-energy crop. The physiological change from juvenile to reproductive adult can draw important resources away from growth into producing reproductive structures, thereby limiting the growth potential of early flowering plants. Delaying the flowering of switchgrass is one approach by which to increase total biomass.
View Article and Find Full Text PDFWe consider multiple testing with false discovery rate (FDR) control when p values have discrete and heterogeneous null distributions. We propose a new estimator of the proportion of true null hypotheses and demonstrate that it is less upwardly biased than Storey's estimator and two other estimators. The new estimator induces two adaptive procedures, that is, an adaptive Benjamini-Hochberg (BH) procedure and an adaptive Benjamini-Hochberg-Heyse (BHH) procedure.
View Article and Find Full Text PDFBackground: Aging is associated with functional decline of neurons and increased incidence of both neurodegenerative and ocular disease. Photoreceptor neurons in Drosophila melanogaster provide a powerful model for studying the molecular changes involved in functional senescence of neurons since decreased visual behavior precedes retinal degeneration. Here, we sought to identify gene expression changes and the genomic features of differentially regulated genes in photoreceptors that contribute to visual senescence.
View Article and Find Full Text PDFBackground: Phytophthora root and stem rot (PRR) of soybean, caused by Phytophthora sojae, is controlled by Rps genes. However, little is known regarding the Rps-induced molecular responses to P. sojae and how they actually overlap.
View Article and Find Full Text PDFMotivation: The majority of next-generation sequencing technologies effectively sample small amounts of DNA or RNA that are amplified (i.e. copied) before sequencing.
View Article and Find Full Text PDFPolyploidy is generally not tolerated in animals, but is widespread in plant genomes and may result in extensive genetic redundancy. The fate of duplicated genes is poorly understood, both functionally and evolutionarily. Soybean (Glycine max L.
View Article and Find Full Text PDFA systematic Drosophila forward genetic screen for photoreceptor synaptic transmission mutants identified no-on-and-no-off transient C (nonC) based on loss of retinal synaptic responses to light stimulation. The cloned gene encodes phosphatidylinositol-3-kinase-like kinase (PIKK) Smg1, a regulatory kinase of the nonsense-mediated decay (NMD) pathway. The Smg proteins act in an mRNA quality control surveillance mechanism to selectively degrade transcripts containing premature stop codons, thereby preventing the translation of truncated proteins with dominant-negative or deleterious gain-of-function activities.
View Article and Find Full Text PDFTwo fundamental types of polyploids are known: allopolyploids, in which different parental chromosome sets were combined by ancestral hybridization and duplication; and autopolyploids, which derive from multiplication of the same chromosome set. In autopolyploids, changes to the nuclear environment are not as profound as in allopolyploids, and therefore the effects of genome doubling on gene regulation remain unclear. To investigate the consequences of autopolyploidization per se, we performed a microarray analysis in three equivalent lineages of matched diploids and autotetraploids of Arabidopsis thaliana.
View Article and Find Full Text PDFGene regulatory networks refer to the interactions that occur among genes and other cellular products. The topology of these networks can be inferred from measurements of changes in gene expression over time. However, because the measurement device (i.
View Article and Find Full Text PDFIn Drosophila, a phospholipase C-mediated signaling cascade links photoexcitation of rhodopsin to the opening of the TRP/TRPL channels. A lipid product of the cascade, diacylglycerol (DAG) and its metabolite(s), polyunsaturated fatty acids (PUFAs), have both been proposed as potential excitatory messengers. A crucial enzyme in the understanding of this process is likely to be DAG lipase (DAGL).
View Article and Find Full Text PDFRecent data have revealed that epigenetic alterations, including DNA methylation and chromatin structure changes, are among the earliest molecular abnormalities to occur during tumorigenesis. The inherent thermodynamic stability of cytosine methylation and the apparent high specificity of the alterations for disease may accelerate the development of powerful molecular diagnostics for cancer. We report a genome-wide analysis of DNA methylation alterations in breast cancer.
View Article and Find Full Text PDFLittle is known about how gene expression variation within a given species controls phenotypic variation under different treatments or environments. Here, we surveyed the transcriptome response of seven diverse Arabidopsis thaliana accessions in response to two treatments: the presence and absence of exogenously applied salicylic acid (SA), an important signaling molecule in plant defense. A factorial experiment was conducted with three biological replicates per accession with and without applications of SA and sampled at three time points posttreatment.
View Article and Find Full Text PDFStat Appl Genet Mol Biol
April 2007
For situations where the number of tested hypotheses is increasingly large, the power to detect statistically significant multiple treatment effects decreases. As is the case with microarray technology, often researchers are interested in identifying differentially expressed genes for more than two types of cells or treatments. A two-step procedure is proposed for the purpose of increasing power to detect significant effects (i.
View Article and Find Full Text PDFPolyploids are common and arise frequently by genome duplication (autopolyploids) or interspecific hybridization (allopolyploids). Neoallopolyploids display sterility, lethality, phenotypic instability, gene silencing and epigenetic changes. Little is known about the molecular basis of these phenomena, and how much genomic remodeling happens upon allopolyploidization.
View Article and Find Full Text PDFHeterochromatin has been defined as deeply staining chromosomal material that remains condensed in interphase, whereas euchromatin undergoes de-condensation. Heterochromatin is found near centromeres and telomeres, but interstitial sites of heterochromatin (knobs) are common in plant genomes and were first described in maize. These regions are repetitive and late-replicating.
View Article and Find Full Text PDFIn recent work, a statistical model was proposed for the purpose of estimating parameters associated with quantitative trait locus (QTL) mapping and preferential pairing within a polyploidy framework. The statistical model contained several parameters that, when estimated from experimental data, supplied information about QTL, including a preferential pairing factor. Among the results reported were estimates of preferential pairing, many of which indicated high levels of preferential pairing (p = 0.
View Article and Find Full Text PDFDay 3 thymectomy (D3Tx) results in a loss of peripheral tolerance mediated by CD4(+)CD25(+) T cells and the development of autoimmune ovarian dysgenesis (AOD) in A/J and (C57BL/6J x A/J)F(1) (B6AF(1)) hybrids but not in C57BL/6J mice. Quantitative trait loci (QTL) linkage analysis using a B6AF(1) x C57BL/6J backcross population verified Aod1 and Aod2 that were previously mapped as qualitative traits. Additionally, three new QTL intervals, Aod3, Aod4, and Aod5, on chromosomes 1, 2, and 7, respectively, influencing specific subphenotypes of AOD were identified.
View Article and Find Full Text PDFNat Rev Genet
January 2002
Simple statistical methods for the study of quantitative trait loci (QTL), such as analysis of variance, have given way to methods that involve several markers and high-resolution genetic maps. As a result, the mapping community has been provided with statistical and computational tools that have much greater power than ever before for studying and locating multiple and interacting QTL. Apart from their immediate practical applications, the lessons learnt from this evolution of QTL methodology might also be generally relevant to other types of functional genomics approach that are aimed at the dissection of complex phenotypes, such as microarray assessment of gene expression.
View Article and Find Full Text PDF