Publications by authors named "Rebecca Dally"

Magnetic skyrmions are topologically protected, nanoscale whirls of the spin configuration that tend to form hexagonally ordered arrays. As a topologically non-trivial structure, the nucleation and annihilation of the skyrmion, as well as the interaction between skyrmions, varies from conventional magnetic systems. Recent works have suggested that the ordering kinetics in these materials occur over millisecond or longer timescales, which is unusually slow for magnetic dynamics.

View Article and Find Full Text PDF

Anisotropy and competing exchange interactions have emerged as two central ingredients needed for centrosymmetric materials to exhibit topological spin textures. FeSn is thought to have these ingredients as well, as it has recently been discovered to host room temperature skyrmionic bubbles with an accompanying topological Hall effect. We present small-angle inelastic neutron scattering measurements that unambiguously show that FeSn is an isotropic ferromagnet below to at least 480 K - the lower temperature threshold of our experimental configuration.

View Article and Find Full Text PDF

Identification, understanding, and manipulation of novel magnetic textures are essential for the discovery of new quantum materials for future spin-based electronic devices. In particular, materials that manifest a large response to external stimuli such as a magnetic field are subject to intense investigation. Here, we study the kagome-net magnet YMnSn by magnetometry, transport, and neutron diffraction measurements combined with first-principles calculations.

View Article and Find Full Text PDF

Here we report on the formation of a three-magnon bound state in the quasi-one-dimensional antiferromagnet α-NaMnO_{2}, where the single-ion, uniaxial anisotropy inherent to the Mn^{3+} ions in this material provides a binding mechanism capable of stabilizing higher order magnon bound states. While such states have long remained elusive in studies of antiferromagnetic chains, neutron scattering data presented here demonstrate that higher order n>2 composite magnons exist, and, specifically, that a weak three-magnon bound state is detected below the antiferromagnetic ordering transition of NaMnO_{2}. We corroborate our findings with exact numerical simulations of a one-dimensional Heisenberg chain with easy-axis anisotropy using matrix-product state techniques, finding a good quantitative agreement with the experiment.

View Article and Find Full Text PDF

Magnetic order on the spatially anisotropic triangular lattice of is studied via neutron diffraction measurements. The transition into a commensurate, collinear antiferromagnetic ground state with was found to occur below . Above this temperature, the transition is preceded by the formation of a coexisting, short-range ordered, incommensurate state below whose two-dimensional propagation vector evolves toward as the temperature approaches .

View Article and Find Full Text PDF

Amplitude modes arising from symmetry breaking in materials are of broad interest in condensed matter physics. These modes reflect an oscillation in the amplitude of a complex order parameter, yet are typically unstable and decay into oscillations of the order parameter's phase. This renders stable amplitude modes rare, and exotic effects in quantum antiferromagnets have historically provided a realm for their detection.

View Article and Find Full Text PDF

Achieving higher carrier mobility plays a pivotal role for obtaining potentially high thermoelectric performance. In principle, the carrier mobility is governed by the band structure as well as by the carrier scattering mechanism. Here, we demonstrate that by manipulating the carrier scattering mechanism in n-type MgSb-based materials, a substantial improvement in carrier mobility, and hence the power factor, can be achieved.

View Article and Find Full Text PDF

The compounds RECuGa3 (RE = La-Nd, Sm-Gd) were synthesized by various techniques. Preliminary X-ray diffraction (XRD) analyses at room temperature suggested that the compounds crystallize in the tetragonal system with either the centrosymmetric space group I4/mmm (BaAl4 type) or the non-centrosymmetric space group I4mm (BaNiSn3 type). Detailed single-crystal XRD, neutron diffraction, and synchrotron XRD studies of selected compounds confirmed the non-centrosymmetric BaNiSn3 structure type at room temperature with space group I4mm.

View Article and Find Full Text PDF

The electronic phase diagram of the weak spin-orbit Mott insulator (Sr(1-x)La(x))(3)Ir(2)O(7) is determined via an exhaustive experimental study. Upon doping electrons via La substitution, an immediate collapse in resistivity occurs along with a narrow regime of nanoscale phase separation comprised of antiferromagnetic, insulating regions and paramagnetic, metallic puddles persisting until x≈0.04.

View Article and Find Full Text PDF

The magnetic ground state of the J(eff)=1/2 hyperkagome lattice in Na₄Ir₃O₈ is explored via combined bulk magnetization, muon spin relaxation, and neutron scattering measurements. A short-range, frozen state comprised of quasistatic moments develops below a characteristic temperature of T(F)=6  K, revealing an inhomogeneous distribution of spins occupying the entirety of the sample volume. Quasistatic, short-range spin correlations persist until at least 20 mK and differ substantially from the nominally dynamic response of a quantum spin liquid.

View Article and Find Full Text PDF

The Autism Diagnostic Interview-Revised (ADI-R) is one of the most commonly used instruments for assisting in the behavioral diagnosis of autism. The exam consists of 93 questions that must be answered by a care provider within a focused session that often spans 2.5 hours.

View Article and Find Full Text PDF