Publications by authors named "Rebecca Cubitt"

Background: MicroRNAs (miRNAs) are important post-transcriptional gene regulators controlling cellular lineage specification and differentiation during embryonic development, including the gastrointestinal system. However, miRNA-mediated regulatory mechanisms involved in early embryonic development of human small intestine (SI) remains underexplored. To explore candidate roles for miRNAs in prenatal SI lineage specification in humans, we used a multi-omic analysis strategy in a directed differentiation model that programs human pluripotent stem cells toward the SI lineage.

View Article and Find Full Text PDF

MicroRNA-mediated regulation is critical for the proper development and function of the small intestinal (SI) epithelium. However, it is not known which microRNAs are expressed in each of the cell types of the SI epithelium. To bridge this important knowledge gap, we performed comprehensive microRNA profiling in all major cell types of the mouse SI epithelium.

View Article and Find Full Text PDF

Type 2 inflammation is associated with epithelial cell responses, including goblet cell hyperplasia, that promote worm expulsion during intestinal helminth infection. How these epithelial responses are regulated remains incompletely understood. Here, we show that mice deficient in the prostaglandin D2 (PGD2) receptor CRTH2 and mice with CRTH2 deficiency only in nonhematopoietic cells exhibited enhanced worm clearance and intestinal goblet cell hyperplasia following infection with the helminth Nippostrongylus brasiliensis.

View Article and Find Full Text PDF

Atopic dermatitis (AD) is an allergic skin disease that causes significant morbidity and affects multiple species. AD is highly prevalent in companion dogs, and the clinical management of the disease remains challenging. An improved understanding of the immunologic and genetic pathways that lead to disease could inform the development of novel treatments.

View Article and Find Full Text PDF

Background & Aims: The enteroendocrine cell (EEC) lineage is important for intestinal homeostasis. It was recently shown that EEC progenitors contribute to intestinal epithelial growth and renewal, but the underlying mechanisms remain poorly understood. MicroRNAs are under-explored along the entire EEC lineage trajectory, and comparatively little is known about their contributions to intestinal homeostasis.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are known regulators of lipid homeostasis. We recently demonstrated that miR-29 controls the levels of circulating cholesterol and triglycerides, but the mechanisms remained unknown. In the present study, we demonstrated that systemic delivery of locked nucleic acid inhibitor of miR-29 (LNA29) through subcutaneous injection effectively suppresses hepatic expression of miR-29 and dampens lipogenesis (DNL) in the liver of chow-fed mice.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are important posttranscriptional regulators of metabolism and energy homeostasis. Dysregulation of certain miRNAs in the liver has been shown to contribute to the pathogenesis of Type 2 diabetes (T2D), in part by impairing hepatic insulin sensitivity. By small RNA-sequencing analysis, we identified seven hepatic miRNAs (including miR-29b) that are consistently aberrantly expressed across five different rodent models of metabolic dysfunction that share the feature of insulin resistance (IR).

View Article and Find Full Text PDF

Type 2 inflammation drives the clearance of gastrointestinal helminth parasites, which infect over two billion people worldwide. Basophils are innate immune cells that support host-protective type 2 inflammation during murine infection with the helminth However, the mechanisms required for basophil function and gene expression regulation in this context remain unclear. We show that during infection, basophils localized to the intestine and up-regulated Notch receptor expression, rendering them sensitive to Notch signals that rapidly regulate gene expression programs.

View Article and Find Full Text PDF