Cerebral cortical-enriched organoids derived from human pluripotent stem cells (hPSCs) are valuable models for studying neurodevelopment, disease mechanisms, and therapeutic development. However, recognized limitations include the high variability of organoids across hPSC donor lines and experimental replicates. We report a 96-slitwell method for efficient, scalable, reproducible cortical organoid production.
View Article and Find Full Text PDFSTAU2 is a double-stranded RNA-binding protein enriched in the nervous system. During asymmetric divisions in the developing mouse cortex, STAU2 preferentially distributes into the intermediate progenitor cell (IPC), delivering RNA molecules that can impact IPC behavior. Corticogenesis occurs on a precise time schedule, raising the hypothesis that the cargo STAU2 delivers into IPCs changes over time.
View Article and Find Full Text PDFFrontotemporal dementia (FTD) because of MAPT mutation causes pathological accumulation of tau and glutamatergic cortical neuronal death by unknown mechanisms. We used human induced pluripotent stem cell (iPSC)-derived cerebral organoids expressing tau-V337M and isogenic corrected controls to discover early alterations because of the mutation that precede neurodegeneration. At 2 months, mutant organoids show upregulated expression of MAPT, glutamatergic signaling pathways, and regulators, including the RNA-binding protein ELAVL4, and increased stress granules.
View Article and Find Full Text PDFTo better understand the mechanisms that govern the development of retinal neurons, it is critical to gain additional insight into the specific intrinsic factors that control cell fate decisions and neuronal maturation. In the developing mouse retina, Atoh7, a highly conserved transcription factor, is essential for retinal ganglion cell development. Moreover, Atoh7 expression in the developing retina occurs during a critical time period when progenitor cells are in the process of making cell fate decisions.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is characterized by progressive muscle atrophy resulting from the deterioration of motor neurons in the central nervous system (CNS). Recent genome-wide association studies have revealed several genes linked to ALS, further demonstrating the complexity of the disease. The zebrafish (Danio rerio) is an attractive model organism to study the function of the rapidly expanding number of ALS-associated genes, in part, due to the development of genome editing techniques that have facilitated specific gene targeting.
View Article and Find Full Text PDFDuring retinal development, a variety of different types of neurons are produced. Understanding how each of these types of retinal nerve cells is generated is important from a developmental biology perspective. It is equally important if one is interested in how to regenerate cells after an injury or a disease.
View Article and Find Full Text PDFThe entire repertoire of intrinsic factors that control the cell fate determination process of specific retinal neurons has yet to be fully identified. Single cell transcriptome profiling experiments of retinal progenitor cells revealed considerable gene expression heterogeneity between individual cells, especially among different classes of transcription factors. In this study, we show that two of those factors, Onecut1 and Onecut2, are expressed during mouse retinal development.
View Article and Find Full Text PDFInt Rev Cell Mol Biol
December 2014
Understanding the process by which an uncommitted dividing cell produces particular specialized cells within a tissue remains a fundamental question in developmental biology. Many tissues are well suited for cell-fate studies, but perhaps none more so than the developing retina. Traditionally, experiments using the retina have been designed to elucidate the influence that individual environmental signals or transcription factors can have on cell-fate decisions.
View Article and Find Full Text PDF