Publications by authors named "Rebecca C Vieira"

Our initial discovery of 8-hydroxyquinoline inhibitors of BoNT/A and separation/testing of enantiomers of one of the more active leads indicated considerable flexibility in the binding site. We designed a limited study to investigate this flexibility and probe structure-activity relationships; utilizing the Betti reaction, a 36 compound matrix of quinolinol BoNT/A LC inhibitors was developed using three 8-hydroxyquinolines, three heteroaromatic amines, and four substituted benzaldehydes. This study has revealed some of the most effective quinolinol-based BoNT/A inhibitors to date, with 7 compounds displaying IC values ⩽1μM and 11 effective at ⩽2μM in an ex vivo assay.

View Article and Find Full Text PDF

The racemic product of the Betti reaction of 5-chloro-8-hydroxyquinoline, benzaldehyde and 2-aminopyridine was separated by chiral HPLC to determine which enantiomer inhibited botulinum neurotoxin serotype A. When the enantiomers unexpectedly proved to have comparable activity, the absolute structures of (+)-(R)-1 and (-)-(S)-1 were determined by comparison of calculated and observed circular dichroism spectra. Molecular modeling studies were undertaken in an effort to understand the observed bioactivity and revealed different ensembles of binding modes, with roughly equal binding energies, for the two enantiomers.

View Article and Find Full Text PDF

Photoinduced electron transfer in two room-temperature ionic liquids, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF(6)) and 1-octyl-3-methylimidazolium hexafluorophosphate (OMIM-PF(6)), has been investigated using steady-state fluorescence quenching of 9,10-dicyanoanthracene with a series of single electron donors. From these fluorescence quenching rates, reorganization energy (lambda) values and k(diff) values can be derived from a Rehm-Weller analysis. In many cases, these fluorescence quenching reactions occur at rates larger than what would be expected based on the Smoluchowski equation.

View Article and Find Full Text PDF