Background: Research has revealed associations between microbes of the gastrointestinal tract and stress, anxiety and depression in pregnant or postpartum women. While these studies suggest a gut-brain-behaviour axis, no studies have examined microbes of the oral cavity in relation to maternal mental health.
Objective: To explore a potential oral-brain-behaviour axis related to maternal mental health.
Turner syndrome, caused by complete or partial loss of an X-chromosome, is often accompanied by specific cognitive challenges. Magnetic resonance imaging studies of adults and children with Turner syndrome suggest these deficits reflect differences in anatomical and functional connectivity. However, no imaging studies have explored connectivity in infants with Turner syndrome.
View Article and Find Full Text PDFThe human brain grows quickly during infancy and early childhood, but factors influencing brain maturation in this period remain poorly understood. To address this gap, we harmonized data from eight diverse cohorts, creating one of the largest pediatric neuroimaging datasets to date focused on birth to 6 years of age. We mapped the developmental trajectory of intracranial and subcortical volumes in ∼2,000 children and studied how sociodemographic factors and adverse birth outcomes influence brain structure and cognition.
View Article and Find Full Text PDFBackground: Turner syndrome (TS) is a genetic disorder associated with complete or partial absence of an X chromosome affecting approximately 1/2000 live female births. Available evidence suggests that, in the school-age years, girls with TS often require speech and language services; however, little is known about the language development of infants and toddlers.
Method: This study (N = 31) explored the language profiles of 12- and 24-month-old girls with TS, as well as the percentage of girls who might be "at risk" for language delays.
Experimental manipulation of gut microbes in animal models alters fear behavior and relevant neurocircuitry. In humans, the first year of life is a key period for brain development, the emergence of fearfulness, and the establishment of the gut microbiome. Variation in the infant gut microbiome has previously been linked to cognitive development, but its relationship with fear behavior and neurocircuitry is unknown.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2021
Tracing the early paths leading to developmental disorders is critical for prevention. In previous work, we detected an interaction between genomic risk scores for schizophrenia (GRSs) and early-life complications (ELCs), so that the liability of the disorder explained by genomic risk was higher in the presence of a history of ELCs, compared with its absence. This interaction was specifically driven by loci harboring genes highly expressed in placentae from normal and complicated pregnancies [G.
View Article and Find Full Text PDFBackground: Non-human primates are commonly used in neuroimaging research for which general anaesthesia or sedation is typically required for data acquisition. In this analysis, the cumulative effects of exposure to ketamine, Telazol® (tiletamine and zolazepam), and the inhaled anaesthetic isoflurane on early brain development were evaluated in two independent cohorts of typically developing rhesus macaques.
Methods: Diffusion MRI scans were analysed from 43 rhesus macaques (20 females and 23 males) at either 12 or 18 months of age from two separate primate colonies.
Psychoneuroendocrinology
February 2021
Adolescence is a transitional period between childhood and adulthood characterized by significant changes in global and regional brain tissue volumes. It is also a period of increasing vulnerability to psychiatric illness. The relationship between these patterns and increased levels of circulating sex steroids during adolescence remains unclear.
View Article and Find Full Text PDFThe Hypothalamic Pituitary Adrenal (HPA) axis regulates hormonal responses to stress in both humans and animals and is dysregulated in a wide range of psychiatric disorders. There is strong evidence from rodent studies that gut microbial composition influences HPA axis development. In humans, variation in the gut microbiome has been associated with several psychological domains including depression and cognitive development, but studies focused on HPA axis development are still lacking.
View Article and Find Full Text PDFThis review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.
View Article and Find Full Text PDFObjective: To examine the early cognitive, temperament, and adaptive functioning of infants and toddlers with Turner syndrome (TS).
Methods: Cognitive abilities were measured using the Mullen Scales of Early Learning at 1 year of age for 31 girls with TS and compared with neurotypical female (N = 53) and male (N = 54) control groups. Temperament (Carey Toddler Temperament Scales) and adaptive functioning (Vineland Adaptive Behavior Scales-Second Edition) were measured at 1 year of age and compared with normative data.
Cortical structure has been consistently related to cognitive abilities in children and adults, yet we know little about how the cortex develops to support emergent cognition in infancy and toddlerhood when cortical thickness (CT) and surface area (SA) are maturing rapidly. In this report, we assessed how regional and global measures of CT and SA in a sample (N = 487) of healthy neonates, 1-year-olds, and 2-year-olds related to motor, language, visual reception, and general cognitive ability. We report novel findings that thicker cortices at ages 1 and 2 and larger SA at birth, age 1, and age 2 confer a cognitive advantage in infancy and toddlerhood.
View Article and Find Full Text PDFIt becomes increasingly important in using genome-wide association studies (GWAS) to select important genetic information associated with qualitative or quantitative traits. Currently, the discovery of biological association among SNPs motivates various strategies to construct SNP-sets along the genome and to incorporate such set information into selection procedure for a higher selection power, while facilitating more biologically meaningful results. The aim of this paper is to propose a novel Bayesian framework for hierarchical variable selection at both SNP-set (group) level and SNP (within group) level.
View Article and Find Full Text PDFTo address knowledge gaps about Turner syndrome (TS) associated disease mechanisms, the Turner Syndrome Society of the United States created the Turner Syndrome Research Registry (TSRR), a patient-powered registry for girls and women with TS. More than 600 participants, parents or guardians completed a 33-item foundational survey that included questions about demographics, medical conditions, psychological conditions, sexuality, hormonal therapy, patient and provider knowledge about TS, and patient satisfaction. The TSRR platform is engineered to allow individuals living with rare conditions and investigators to work side-by-side.
View Article and Find Full Text PDFAm J Med Genet C Semin Med Genet
March 2019
Individuals with Turner syndrome (TS) often exhibit specific deficits in visual-spatial functions, arithmetical abilities, social cognition, and executive functions with preserved general intelligence and preserved or enhanced verbal skills. This unique pattern of cognitive strengths and weaknesses is accompanied by a well-described neuroanatomical phenotype characterized by decreased gray matter volumes in premotor, somatosensory, and parietal-occipital cortex, and increased volumes of the amygdala and orbitofrontal cortex. Why the absence of the second sex chromosome should produce these effects remains poorly understood.
View Article and Find Full Text PDFRecently, there has been a surge of interest in the possibility that microbial communities inhabiting the human gut could affect cognitive development and increase risk for mental illness via the "microbiome-gut-brain axis." Infancy likely represents a critical period for the establishment of these relationships, as it is the most dynamic stage of postnatal brain development and a key period in the maturation of the microbiome. Indeed, recent reports indicate that characteristics of the infant gut microbiome are associated with both temperament and cognitive performance.
View Article and Find Full Text PDFWhite matter (WM) integrity has been related to cognitive ability in adults and children, but it remains largely unknown how WM maturation in early life supports emergent cognition. The associations between tract-based measures of fractional anisotropy (FA) and axial and radial diffusivity (AD, RD) shortly after birth, at age 1, and at age 2 and cognitive measures at 1 and 2 years were investigated in 447 healthy infants. We found that generally higher FA and lower AD and RD across many WM tracts in the first year of life were associated with better performance on measures of general cognitive ability, motor, language, and visual reception skills at ages 1 and 2, suggesting an important role for the overall organization, myelination, and microstructural properties of fiber pathways in emergent cognition.
View Article and Find Full Text PDFThe past decades witnessed a surge of interest in neuroimaging study of normal and abnormal early brain development. Structural and functional studies of normal early brain development revealed massive structural maturation as well as sequential, coordinated, and hierarchical emergence of functional networks during the infancy period, providing a great foundation for the investigation of abnormal early brain development mechanisms. Indeed, studies of altered brain development associated with either genetic or environmental risks emerged and thrived.
View Article and Find Full Text PDFNat Rev Neurosci
February 2018
In humans, the period from term birth to ∼2 years of age is characterized by rapid and dynamic brain development and plays an important role in cognitive development and risk of disorders such as autism and schizophrenia. Recent imaging studies have begun to delineate the growth trajectories of brain structure and function in the first years after birth and their relationship to cognition and risk of neuropsychiatric disorders. This Review discusses the development of grey and white matter and structural and functional networks, as well as genetic and environmental influences on early-childhood brain development.
View Article and Find Full Text PDFCortical thickness (CT) and surface area (SA) vary widely between individuals and are associated with intellectual ability and risk for various psychiatric and neurodevelopmental conditions. Factors influencing this variability remain poorly understood, but the radial unit hypothesis, as well as the more recent supragranular cortex expansion hypothesis, suggests that prenatal and perinatal influences may be particularly important. In this report, we examine the impact of 17 major demographic and obstetric history variables on interindividual variation in CT and SA in a unique sample of 805 neonates who received MRI scans of the brain around 2 weeks of age.
View Article and Find Full Text PDFDiffusion-weighted magnetic resonance imaging (MRI) provides a unique approach to understand the geometric structure of brain fiber bundles and to delineate the diffusion properties across subjects and time. It can be used to identify structural connectivity abnormalities and helps to diagnose brain-related disorders. The aim of this paper is to develop a novel, robust, and efficient dimensional reduction and regression framework, called hierarchical functional principal regression model (HFPRM), to effectively correlate high-dimensional fiber bundle statistics with a set of predictors of interest, such as age, diagnosis status, and genetic markers.
View Article and Find Full Text PDFBackground: Studies in rodents provide compelling evidence that microorganisms inhabiting the gut influence neurodevelopment. In particular, experimental manipulations that alter intestinal microbiota impact exploratory and communicative behaviors and cognitive performance. In humans, the first years of life are a dynamic time in gut colonization and brain development, but little is known about the relationship between these two processes.
View Article and Find Full Text PDF