Background & Aims: Intestinal epithelial cell (IEC) damage is a hallmark of celiac disease (CeD); however, its role in gluten-dependent T-cell activation is unknown. We investigated IEC-gluten-T-cell interactions in organoid monolayers expressing human major histocompatibility complex class II (HLA-DQ2.5), which facilitates gluten antigen recognition by CD4 T cells in CeD.
View Article and Find Full Text PDFBackground: Initiation of antitumor immunity is reliant on the stimulation of dendritic cells (DCs) to present tumor antigens to naïve T cells and generate effector T cells that can kill cancer cells. Induction of immunogenic cell death after certain types of cytotoxic anticancer therapies can stimulate T cell-mediated immunity. However, cytotoxic therapies simultaneously activate multiple types of cellular stress and programmed cell death; hence, it remains unknown what types of cancer cell death confer superior antitumor immunity.
View Article and Find Full Text PDFRecent FDA approvals of chimeric antigen receptor (CAR) T cell therapy for multiple myeloma (MM) have reshaped the therapeutic landscape for this incurable cancer. In pivotal clinical trials B cell maturation antigen (BCMA) targeted, 4-1BB co-stimulated (BBζ) CAR T cells dramatically outperformed standard-of-care chemotherapy, yet most patients experienced MM relapse within two years of therapy, underscoring the need to improve CAR T cell efficacy in MM. We set out to determine if inhibition of MM bone marrow microenvironment (BME) survival signaling could increase sensitivity to CAR T cells.
View Article and Find Full Text PDFImmunomodulatory cytokines can alter the tumor microenvironment and promote tumor eradication. Interleukin (IL)-27 is a pleiotropic cytokine that has potential to augment anti-tumor immunity while also facilitating anti-myeloma activity. We engineered human T cells to express a recombinant single-chain (sc)IL-27 and a synthetic antigen receptor targeting the myeloma antigen, B-cell maturation antigen, and evaluated the anti-tumor function of T cells bearing scIL-27 in vitro and in vivo.
View Article and Find Full Text PDFCytokine Growth Factor Rev
December 2020
Tumours employ a variety of immune-evasion and suppression mechanisms to impair development of functional tumor-specific T cells and subvert T cell-mediated immunity in the tumour microenvironment. Adoptive T cell therapy (ACT) aims to overcome these barriers and overwhelm tumor defenses with a bolus of T cells that were selectively expanded ex vivo. Although this strategy has been effective in liquid tumors and melanomas, many tumors appear to be resistant to ACT.
View Article and Find Full Text PDFGlioblastoma (GBM) is a brain tumor that remains largely incurable because of its highly-infiltrative properties. Nuclear factor I (NFI)-type transcription factors regulate genes associated with GBM cell migration and infiltration. We have previously shown that NFI activity depends on the NFI phosphorylation state and that calcineurin phosphatase dephosphorylates and activates NFI.
View Article and Find Full Text PDFMalignant glioma (MG) is the most lethal primary brain tumor. In addition to having inherent resistance to radiation treatment and chemotherapy, MG cells are highly infiltrative, rendering focal therapies ineffective. Genes involved in MG cell migration and glial cell differentiation are up-regulated by hypophosphorylated nuclear factor I (NFI), which is dephosphorylated by the phosphatase calcineurin in MG cells.
View Article and Find Full Text PDF