Polyvinyl chloride (PVC) is a problematic waste plastic with limited options for recycling or upcycling. Herein, we demonstrate preliminary results in breaking down the long carbon chains of PVC into oligomers and small organic molecules. First, treatment with a substoichiometric amount of alkali base effects elimination of HCl to form a salt and creates regions of conjugated carbon-carbon double bonds, as determined by H NMR and UV-Vis spectroscopy.
View Article and Find Full Text PDFPolystyrene supported fluorinated cyclic nitrone spin-traps: Resin-2-HFDMPO (2-hydroxymethyl-2-methyl-5-(trifluoromethyl)-3,4-dihydro-2H-pyrrole-1-oxide) and Resin-2-PFDMPO (2-(3-hydroxypropyl)-2-methyl-5-(trifluoromethyl)-3,4-dihydro-2H-pyrrole 1-oxide) containing a trifluoromethyl pyrroline-N-oxide core were developed to detect free radicals under flow conditions. A continuous flow EPR technique was used to evaluate the spin trapping properties of these tethered nitrones. While both resins trapped radicals, polymer supported nitrone Resin-2-PFDMPO with a longer and more flexible linker showed a more information rich spectrum than Resin-2-HFDMPO.
View Article and Find Full Text PDFThe thermal (3 + 2) dipolar azide-alkyne cycloaddition, proceeding without copper or strained alkynes, is an underutilized ligation with potential applications in materials, bioorganic, and synthetic chemistry. Herein, we investigate the effects of alkyne substitution on the rate of this reaction, both experimentally and computationally. Electron-withdrawing groups accelerate the reaction, providing a range of relative rates from 1.
View Article and Find Full Text PDFHerein we present a novel silver complex [Ag(qBODIPY)(CFSO)] (1) that exhibits dramatic increase in fluorescence upon silver release. Complex 1 has a minimum inhibitory concentration comparable to that of silver nitrate. Confocal microscopy was used to track the delivery of silver to bacterial targets.
View Article and Find Full Text PDFCopper-free azide-alkyne click chemistry is utilized to covalently modify polyvinyl chloride(PVC). Phthalate plasticizer mimics di(2-ethylhexyl)-1H-triazole-4,5 dicarboxylate (DEHT), di(nbutyl)-1H-1,2,3-triazole-4,5-dicarboxylate (DBT), and dimethyl-1H-triazole-4,5-dicarboxylate(DMT) are covalently attached to PVC. DEHT, DBT, and DMT have similar chemical structures to traditional plasticizers di(2-ethylhexyl) phthalate (DEHP), di(n-butyl) phthalate (DBP), and dimethyl phthalate (DMP), but pose no danger of leaching from the polymer matrix and forming small endocrine disrupting chemicals.
View Article and Find Full Text PDFA method to visually detect minute amounts of urushiol, the toxic catechol from poison oak, poison ivy, and poison sumac, has been developed utilizing the reaction of a profluorescent nitroxide with the B-n-butylcatecholboronate ester formed in situ from urushiol and B-n-butylboronic acid. The resulting N-alkoxyamine is strongly fluorescent upon illumination with a fluorescent lamp, allowing the location of the toxic urushiol contamination to be visualized. This methodology constitutes the groundwork for the future development of a spray to detect urushiol to avoid contact dermatitis, as well as to detect catecholamines for biomedical applications.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
April 2010
Quantum dot (QD) fluorescence is effectively quenched at low concentration by nitroxides bearing amine or carboxylic acid ligands. The association constants and fluorescence quenching of CdSe QDs with these derivatized nitroxides have been examined using electron paramagnetic resonance (EPR) and fluorescence spectroscopy. The EPR spectra in the non-protic solvent toluene are extremely sensitive to intermolecular and intramolecular hydrogen bonding of the functionalized nitroxides.
View Article and Find Full Text PDFNitroxide-mediated "living" radical polymerization with bisalkoxyamine 2,5,5,8,8,11-hexamethyl-4,9-(1-phenylethoxy)-3,10-diphenyl-4,9-diazadodecane produces polymers of controlled length and narrow molecular weight distributions at temperatures ranging from 70 to 110 °C. Polymerizations were run successfully with styrene (St), tert-butyl acrylate (tBA), and dimethylacrylamide (DMA). EPR measurements of the homolysis of this bisalkoxyamine and monoalkoxyamine 2,2,5-trimethyl-3-(1-phenylethoxy)-4-phenyl-3-azahexane at temperatures ranging from 85 to 105 °C give rate constants for the bisalkoxyamine that are approximately twice as large as those for the monoalkoxyamine.
View Article and Find Full Text PDFSuppression of mitochondrial production of reactive oxygen species is a promising strategy against intrinsic apoptosis typical of degenerative diseases. Stable nitroxide radicals such as 4-hydroxy-2,2,6,6-tetramethyl piperidine-1-oxyl (TEMPOL) and its analogs combine several important features, including recycleability, electron acceptance from respiratory complexes, superoxide dismutase mimicry, and radical scavenging. Although successful in antioxidant protection, their effective concentrations are too high for successful in vivo applications.
View Article and Find Full Text PDF[reaction: see text] A new methodology for [n + 1] radical annulation using sulfur dioxide as a geminal radical acceptor/donor is presented. This methodology provides a novel route to the formation of five-, six-, and seven-membered cyclic sulfones utilizing a radical chain mechanism under very mild conditions.
View Article and Find Full Text PDF[reaction: see text] We report a new methodology for the synthesis of the N-alkoxyamines, which can be used as initiators in "living" free radical polymerization. Silyl radical abstraction from alkyl halides allows the synthesis of N-alkoxyamines inaccessible by other methods.
View Article and Find Full Text PDF