Publications by authors named "Rebecca Axelsson-Robertson"

Less than a third of patients with acute myeloid leukemia (AML) are cured by chemotherapy and/or hematopoietic stem cell transplantation, highlighting the need to develop more efficient drugs. The low efficacy of standard treatments is associated with inadequate depletion of CD34+ blasts and leukemic stem cells, the latter a drug-resistant subpopulation of leukemia cells characterized by the CD34+CD38- phenotype. To target these drug-resistant primitive leukemic cells better, we have designed a CD34/CD3 bi-specific T-cell engager (BTE) and characterized its anti-leukemia potential in vitro, ex vivo and in vivo.

View Article and Find Full Text PDF

Virus-specific T-cell responses are crucial to control cytomegalovirus (CMV) infections/reactivation in immunocompromised individuals. Adoptive cellular therapy with CMV-specific T-cells has become a viable treatment option. High-affinity anti-viral cellular immune responses are associated with improved long-term immune protection against CMV infection.

View Article and Find Full Text PDF

Tumor-infiltrating lymphocytes (TILs) may represent a viable source of T cells for the biological treatment of patients with gliomas. Glioma tissue was obtained from 16 patients, tumor cell lines were established, and TILs were expanded in 16/16 cases using a combination of IL-2/IL-15/IL-21. Intracellular cytokine staining (ICS, IL-2, IL-17, TNFα and IFNγ production) as well as a cytotoxicity assay was used to detect TIL reactivity against autologous tumor cells or shared tumor-associated antigens (TAAs; i.

View Article and Find Full Text PDF

Background: Bacille Calmette-Guérin (BCG) is the world's most widely distributed vaccine, used against tuberculosis (TB), in cancer immunotherapy, and in autoimmune diseases due to its immunomodulatory properties. To date, the effect of BCG vaccination on antibody responses to host proteins has not been reported. High-content peptide microarrays (HCPM) offer a unique opportunity to gauge specific humoral immune responses.

View Article and Find Full Text PDF

Background: To determine the distribution of Human leukocyte antigen (HLA) class I genotypes in a Ugandan population of persons with tuberculosis (TB) and establish the relationship between class I HLA types and Mycobacterium tuberculosis (MTB) disease.

Methods: Blood samples were drawn from HIV negative individuals with active TB and HIV negative household controls. DNA was extracted from blood samples and HLA typed by the polymerase chain reaction-sequence specific primer method.

View Article and Find Full Text PDF

Anti-tuberculosis drug treatment is known to affect the number, phenotype, and effector functionality of antigen-specific T-cells. In order to objectively gauge Mycobacterium tuberculosis (MTB)-specific CD8+ T-cells at the single-cell level, we developed soluble major histocompatibility complex (MHC) class I multimers/peptide multimers, which allow analysis of antigen-specific T-cells without ex vivo manipulation or functional tests. We constructed 38 MHC class I multimers covering some of the most frequent MHC class I alleles (HLA-A*02:01, A*24:02, A*30:01, A*30:02, A*68:01, B*58:01, and C*07:01) pertinent to a South African or Zambian population, and presenting the following MTB-derived peptides: the early expressed secreted antigens TB10.

View Article and Find Full Text PDF

The nature and longevity of the T-cell response directed against Mycobacterium tuberculosis (MTB) are important for effective pathogen containment. We analyzed ex vivo the nature of MTB antigen-specific T-cell responses directed against the MTB secreted antigens Rv0288, Rv1886c, Rv3875, the antigens Rv2958c, Rv2957, and Rv0447c (intracellular, non-secreted enzymes) in blood from Korean patients with active tuberculosis (TB). MTB-specific T-cell function was defined by intracellular cytokine production (interleukin (IL)-2, interferon gamma, tumour necrosis factor alpha, and IL-17) and by multimer-guided (HLA-A*02:01 and HLA-A*24:02) analysis of epitope-specific CD8+ T-cells, along with phenotypic markers (CD45RA and CCR7), CD107a, a marker for degranulation, and CD127 co-staining for T-cell differentiation and homing.

View Article and Find Full Text PDF

Human TCRαβ(+) CD4(-)CD8(-) double-negative (DN) T cells represent a minor subset in peripheral blood, yet are important in infectious diseases and autoimmune responses. We examined the frequency of DN T cells in 17 patients after allogeneic hematopoietic stem cell transplantation (aHSCT) at 1, 2, 3, 6, and 12 months post-aHSCT and show that these cells increase early after aHSCT and decrease with time after aHSCT. DN T cells reside in the terminally differentiated effector (CD45RA(+)CCR7(-)) T-cell population and are polyclonal, determined by T-cell receptor Vβ CDR3 analysis.

View Article and Find Full Text PDF

Background: Previous exposures to flu and subsequent immune responses may impact on 2009/2010 pandemic flu vaccine responses and clinical symptoms upon infection with the 2009 pandemic H1N1 influenza strain. Qualitative and quantitative differences in humoral and cellular immune responses associated with the flu vaccination in 2009/2010 (pandemic H1N1 vaccine) and natural infection have not yet been described in detail. We designed a longitudinal study to examine influenza- (flu-) specific immune responses and the association between pre-existing flu responses, symptoms of influenza-like illness (ILI), impact of pandemic flu infection, and pandemic flu vaccination in a cohort of 2,040 individuals in Sweden in 2009-2010.

View Article and Find Full Text PDF

Using the early protein HIV Nef, new HLA class I binding epitopes of importance for immune responses to HIV were predicted for common African alleles. In total we identified 45 epitopes previously not described for the HLA alleles A*30:01, A*30:02, B*58:01, and C*07:01 and compared them to reported epitopes, primarily from HLA-A*02:01, from the Los Alamos database and our own vaccine studies. Related to its small size, the Nef gene/protein appears to be able to contribute effectively to confer both stronger and broader cellular immunogenicity to an HIV-1 vaccine.

View Article and Find Full Text PDF

We studied major histocompatibility complex (MHC) class I peptide-presentation and nature of the antigen-specific CD8+ T-cell response from South African tuberculosis (TB) patients with active TB. 361 MHC class I binding epitopes were identified from three immunogenic TB proteins (ESAT-6 [Rv3875], Ag85B [Rv1886c], and TB10.4 [Rv0288], including amino acid variations for Rv0288, i.

View Article and Find Full Text PDF

Aerosols containing Mycobacterium tuberculosis (MTB) generated from the cough of patients with active pulmonary tuberculosis are the source of MTB infection. About 70% of individuals exposed to infected aerosols do not get infected, depending on the intensity and duration of MTB exposure. Only 40% of the rest of the individuals (about 10% of those originally exposed) develop primary tuberculosis, whereas the remaining 60% contain the infection with generation of a robust immune response leading to latent tuberculosis, which is regarded as a spectrum rather than a single entity.

View Article and Find Full Text PDF

High-tuberculosis (TB)-burden countries are located in sub-Saharan Africa. We examined the frequency of human leukocyte antigen (HLA) alleles, followed by recombinant expression of the most frequent HLA-A alleles, i.e.

View Article and Find Full Text PDF

The molecular definition of major histocompatibility complex (MHC) class I-presented CD8(+) T-cell epitopes from clinically relevant Mycobacterium tuberculosis (Mtb) target proteins will aid in the rational design of T-cell-based diagnostics of tuberculosis (TB) and the measurement of TB vaccine-take. We used an epitope discovery system, based on recombinant MHC class I molecules that cover the most frequent Caucasian alleles [human leucocyte antigen (HLA)-A*0101, A*0201, A*0301, A*1101, A*2402, B*0702, B*0801 and B*1501], to identify MHC class I-binding peptides from overlapping 9-mer peptides representing the Mtb protein TB10.4.

View Article and Find Full Text PDF