In flowering plants, euchromatic transposons are transcriptionally silenced by RNA-directed DNA Methylation, a small RNA-guided de novo methylation pathway. RNA-directed DNA Methylation requires the activity of the RNA Polymerases IV and V, which produce small RNA precursors and noncoding targets of small RNAs, respectively. These polymerases are distinguished from Polymerase II by multiple plant-specific paralogous subunits.
View Article and Find Full Text PDFIn plants, de novo DNA methylation is guided by 24-nt short interfering (si)RNAs in a process called RNA-directed DNA methylation (RdDM). Primarily targeted at transposons, RdDM causes transcriptional silencing and can indirectly influence expression of neighboring genes. During reproduction, a small number of siRNA loci are dramatically upregulated in the maternally derived seed coat, suggesting that RdDM might have a special function during reproduction.
View Article and Find Full Text PDFPetal color is an important trait for both ornamental purposes and also for attracting pollinators. Here, we report a mutation of R-o-18 with pale yellow petals that we retrieved from an EMS population and named ( ). Phenotypic segregation ratio of an F2 mapping population indicates the phenotype is controlled by a single recessive gene.
View Article and Find Full Text PDFAcross eukaryotes, gene regulation is manifested via chromatin states roughly distinguished as heterochromatin and euchromatin. The establishment, maintenance, and modulation of the chromatin states is mediated using several factors including chromatin modifiers. However, factors that avoid the intrusion of silencing signals into protein-coding genes are poorly understood.
View Article and Find Full Text PDFReproductive tissues are a rich source of small RNAs, including several classes of short interfering (si)RNAs that are restricted to this stage of development. In addition to RNA polymerase IV-dependent 24-nt siRNAs that trigger canonical RNA-directed DNA methylation, abundant reproductive-specific siRNAs are produced from companion cells adjacent to the developing germ line or zygote and may move intercellularly before inducing methylation. In some cases, these siRNAs are produced via non-canonical biosynthesis mechanisms or from sequences with little similarity to transposons.
View Article and Find Full Text PDFLocules are the seed-bearing structure of fruits. Multiple locules are associated with increased fruit size and seed set, and therefore, control of locule number is an important agronomic trait. Locule number is controlled in part by the CLAVATA-WUSCHEL pathway.
View Article and Find Full Text PDFCurr Opin Plant Biol
October 2022
The revolution in sequencing has created a wealth of plant genomes that can be mined to understand the evolution of biological complexity. Complexity is often driven by gene duplication, which allows paralogs to specialize in an activity of the ancestral gene or acquire novel functions. Angiosperms encode a variety of gene silencing pathways that share related machinery for small RNA biosynthesis and function.
View Article and Find Full Text PDFTwenty-four-nucleotide (nt) small interfering RNAs (siRNAs) maintain asymmetric DNA methylation at thousands of euchromatic transposable elements in plant genomes in a process called RNA-directed DNA methylation (RdDM). RdDM is dispensable for growth and development in Arabidopsis thaliana, but is required for reproduction in other plants, such as Brassica rapa. The 24-nt siRNAs are abundant in maternal reproductive tissue, due largely to overwhelming expression from a few loci in the ovule and developing seed coat, termed siren loci.
View Article and Find Full Text PDFAll eukaryotes possess three DNA-dependent RNA polymerases, Pols I-III, while land plants possess two additional polymerases, Pol IV and Pol V. Derived through duplication of Pol II subunits, Pol IV produces 24-nt short interfering RNAs that interact with Pol V transcripts to target de novo DNA methylation and silence transcription of transposons. Members of the grass family encode additional duplicated subunits of Pol IV and V, raising questions regarding the function of each paralog.
View Article and Find Full Text PDFEpigenomics is the study of molecular signatures associated with discrete regions within genomes, many of which are important for a wide range of nuclear processes. The ability to profile the epigenomic landscape associated with genes, repetitive regions, transposons, transcription, differential expression, cis-regulatory elements, and 3D chromatin interactions has vastly improved our understanding of plant genomes. However, many epigenomic and single-cell genomic assays are challenging to perform in plants, leading to a wide range of data quality issues; thus, the data require rigorous evaluation prior to downstream analyses and interpretation.
View Article and Find Full Text PDFBackground: RNA-directed DNA methylation (RdDM) initiates cytosine methylation in all contexts and maintains asymmetric CHH methylation. Mature plant embryos show one of the highest levels of CHH methylation, and it has been suggested that RdDM is responsible for this hypermethylation. Because loss of RdDM in Brassica rapa causes seed abortion, embryo methylation might play a role in seed development.
View Article and Find Full Text PDFSmall RNAs are abundant in plant reproductive tissues, especially 24-nucleotide (nt) small interfering RNAs (siRNAs). Most 24-nt siRNAs are dependent on RNA Pol IV and RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) and establish DNA methylation at thousands of genomic loci in a process called RNA-directed DNA methylation (RdDM). In , RdDM is required in the maternal sporophyte for successful seed development.
View Article and Find Full Text PDFCurr Opin Plant Biol
April 2020
Two trends are changing our understanding of RNA-directed DNA methylation. In model systems like Arabidopsis, tissue-specific analysis of DNA methylation is uncovering dynamic changes in methylation during sexual reproduction and unraveling the contribution of maternal and paternal epigenomes to the developing embryo. These studies indicate that RNA-directed DNA Methylation might be important for mediating balance between maternal and paternal contributions to the endosperm.
View Article and Find Full Text PDFseed development involves maternal small interfering RNAs (siRNAs) that induce RNA-directed DNA methylation (RdDM) through the -mediated pathway. To investigate their biological functions, we characterized siRNAs in the endosperm and seed coat that were separated by laser-capture microdissection (LCM) in reciprocal genetic crosses with an mutant. We also monitored the spatial-temporal activity of the -mediated pathway on seed development using the AGO4:GFP::AGO4 (promoter:GFP::protein) reporter and promoter:GUS sensors of siRNA-mediated silencing.
View Article and Find Full Text PDFGene duplication is an important driver for the evolution of new genes and protein functions. Duplication of DNA-dependent RNA polymerase (Pol) II subunits within plants led to the emergence of RNA Pol IV and V complexes, each of which possess unique functions necessary for RNA-directed DNA Methylation. Comprehensive identification of Pol V subunit orthologs across the monocot radiation revealed a duplication of the largest two subunits within the grasses (Poaceae), including critical cereal crops.
View Article and Find Full Text PDFSmall RNAs trigger repressive DNA methylation at thousands of transposable elements in a process called RNA-directed DNA methylation (RdDM). The molecular mechanism of RdDM is well characterized in Arabidopsis, yet the biological function remains unclear, as loss of RdDM in Arabidopsis causes no overt defects, even after generations of inbreeding. It is known that 24 nucleotide Pol IV-dependent siRNAs, the hallmark of RdDM, are abundant in flowers and developing seeds, indicating that RdDM might be important during reproduction.
View Article and Find Full Text PDFIn flowering plants, the female gametophyte controls pollen tube reception immediately before fertilization and regulates seed development immediately after fertilization, although the controlling mechanisms remain poorly understood. Previously, we showed that (), which encodes a putative glycosylphosphatidylinositol-anchored membrane protein, is critical for pollen tube reception by the female gametophyte before fertilization and the initiation of seed development after fertilization. Here, we show that is expressed in the synergid, egg, and central cells of the female gametophyte and in the zygote and proliferating endosperm of the Arabidopsis () seed.
View Article and Find Full Text PDFTo make genomic and epigenomic analyses more widely available to the biological research community, we have created LoadExp+, a suite of bioinformatics workflows integrated with the web-based comparative genomics platform, CoGe. LoadExp+ allows users to perform transcriptomic (RNA-seq), epigenomic (bisulfite-seq), chromatin-binding (ChIP-seq), variant identification (SNPs), and population genetics analyses against any genome in CoGe, including genomes integrated by users themselves. Through LoadExp+'s integration with CoGe's existing features, all analyses are available for visualization and additional downstream processing, and are available for export to CyVerse's data management and analysis platforms.
View Article and Find Full Text PDFMethods Mol Biol
March 2018
ARGONAUTE (AGO) proteins are eukaryotic RNA silencing effectors that interact with their binding partners via short peptide motifs known as AGO hooks. AGO hooks tend to cluster in one region of the protein to create an AGO-binding platform. In addition to the presence of AGO hooks, AGO-binding platforms are intrinsically disordered, contain tandem repeat arrays, and have weak sequence conservation even between close relatives.
View Article and Find Full Text PDFArgonaute (Ago) proteins are important effectors in RNA silencing pathways, but they must interact with other machinery to trigger silencing. Ago hooks have emerged as a conserved motif responsible for interaction with Ago proteins, but little is known about the sequence surrounding Ago hooks that must restrict or enable interaction with specific Argonautes. Here we investigated the evolutionary dynamics of an Ago-binding platform in NRPE1, the largest subunit of RNA polymerase V.
View Article and Find Full Text PDFSmall RNA-mediated chromatin modification is a conserved feature of eukaryotes. In flowering plants, the short interfering (si)RNAs that direct transcriptional silencing are abundant and subfunctionalization has led to specialized machinery responsible for synthesis and action of these small RNAs. In particular, plants possess polymerase (Pol) IV and Pol V, multi-subunit homologs of the canonical DNA-dependent RNA Pol II, as well as specialized members of the RNA-dependent RNA Polymerase (RDR), Dicer-like (DCL), and Argonaute (AGO) families.
View Article and Find Full Text PDFRNA-directed DNA methylation (RdDM) is the major small RNA-mediated epigenetic pathway in plants. RdDM requires a specialized transcriptional machinery that comprises two plant-specific RNA polymerases - Pol IV and Pol V - and a growing number of accessory proteins, the functions of which in the RdDM mechanism are only partially understood. Recent work has revealed variations in the canonical RdDM pathway and identified factors that recruit Pol IV and Pol V to specific target sequences.
View Article and Find Full Text PDF