Tendon injuries often require surgical intervention and even then result in poor outcomes due to scar formation and repeated failure. Biomaterial implants offer the potential to address multiple underlying concerns preventing improved tendon repair. Here, we describe modifications to the composition of an anisotropic collagen-glycosaminoglycan (CG) scaffold biomaterial, incorporating amniotic membrane (AM)-derived matrix to alter the inflammatory response and establish conditions for improved regenerative repair.
View Article and Find Full Text PDFCardiovascular disease is the global leading cause of death. One route to address this problem is using biomedical imaging to measure the molecules and structures that surround cardiac cells. This cellular microenvironment, known as the cardiac extracellular matrix, changes in composition and organization during most cardiac diseases and in response to many cardiac treatments.
View Article and Find Full Text PDFA tissue engineering approach to address craniofacial defects requires a biomaterial that balances macro-scale mechanical stiffness and strength with the micron-scale features that promote cell expansion and tissue biosynthesis. Such criteria are often in opposition, leading to suboptimal mechanical competence or bioactivity. We report the use of a multiscale composite biomaterial that integrates a polycaprolactone (PCL) reinforcement structure with a mineralized collagen-glycosaminoglycan scaffold to circumvent conventional tradeoffs between mechanics and bioactivity.
View Article and Find Full Text PDFExp Biol Med (Maywood)
May 2016
Tissue regeneration strategies have traditionally relied on designing biomaterials that closely mimic features of the native extracellular matrix (ECM) as a means to potentially promote site-specific cellular behaviors. However, inflammation, while a necessary component of wound healing, can alter processes associated with successful tissue regeneration following an initial injury. These processes can be further magnified by the implantation of a biomaterial within the wound site.
View Article and Find Full Text PDFAdult tendon wound repair is characterized by the formation of disorganized collagen matrix which leads to decreases in mechanical properties and scar formation. Studies have linked this scar formation to the inflammatory phase of wound healing. Instructive biomaterials designed for tendon regeneration are often designed to provide both structural and cellular support.
View Article and Find Full Text PDFThe design of biomaterials for increasingly complex tissue engineering applications often requires exogenous presentation of biomolecular signals. Integration of gene delivery vectors with a biomaterial scaffold offers the potential to bypass the use of expensive and relatively inefficient growth factor supplementation strategies to augment cell behavior. However, integration of cationic polymer based gene delivery vectors within three-dimensional biomaterials, particularly matrices which can carry significant surface charge, remains poorly explored.
View Article and Find Full Text PDFThe design of biomaterials for regenerative medicine can require biomolecular cues such as growth factors to induce a desired cell activity. Signal molecules are often incorporated into the biomaterial in either freely-diffusible or covalently-bound forms. However, biomolecular environments in vivo are often complex and dynamic.
View Article and Find Full Text PDF