Advances in nanoscale additive manufacturing (AM) offer great opportunities to expand nanotechnologies; however, the size effects in these printed remain largely unexplored. Using bothnanomechanical and electrical experiments and molecular dynamics (MD) simulations, this study investigates additively manufactured nano-architected nanocrystalline ZnO (nc-ZnO) with ∼7 nm grains and dimensions spanning 0.25-4m.
View Article and Find Full Text PDFStudies on mechanical size effects in nanosized metals unanimously highlight both intrinsic microstructures and extrinsic dimensions for understanding size-dependent properties, commonly focusing on strengths of uniform microstructures, e.g., single-crystalline/nanocrystalline and nanoporous, as a function of pillar diameters, .
View Article and Find Full Text PDFMetal additive manufacturing (AM) enables the production of high value and high performance components with applications from aerospace to biomedical fields. Layer-by-layer fabrication circumvents the geometric limitations of traditional metalworking techniques, allowing topologically optimized parts to be made rapidly and efficiently. Existing AM techniques rely on thermally initiated melting or sintering for part shaping, a costly and material-limited process.
View Article and Find Full Text PDFNanowires are an increasingly prevalent class of nanomaterials in composites and devices, with arrays and other complex geometries used in various applications. Little investigation has been done regarding the mechanical behavior of micron-sized nanowire structures. We conduct in situ microcompression experiments on vertically aligned dense microbundles of 300 nm diameter single-crystalline zinc oxide nanowires to gain insights into their structural failure.
View Article and Find Full Text PDF