Publications by authors named "Rebecca A Ellwood"

Mutations in the dystrophin gene cause Duchenne muscular dystrophy (DMD), a common muscle disease that manifests with muscle weakness, wasting, and degeneration. An emerging theme in DMD pathophysiology is an intramuscular deficit in the gasotransmitter hydrogen sulfide (HS). Here we show that the C.

View Article and Find Full Text PDF

Progressive neuromuscular decline in microgravity is a prominent health concern preventing interplanetary human habitation. We establish functional dopamine-mediated impairments as a consistent feature across multiple spaceflight exposures and during simulated microgravity in . Animals grown continuously in these conditions display reduced movement and body length.

View Article and Find Full Text PDF

The nematode worm has been used extensively to enhance our understanding of the human neuromuscular disorder Duchenne Muscular Dystrophy (DMD). With new arising clinically relevant models, technologies and treatments, there is a need to reconcile the literature and collate the key findings associated with this model.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterized by progressive muscle degeneration and weakness due to mutations in the dystrophin gene. The symptoms of DMD share similarities with those of accelerated aging. Recently, hydrogen sulfide (HS) supplementation has been suggested to modulate the effects of age-related decline in muscle function, and metabolic HS deficiencies have been implicated in affecting muscle mass in conditions such as phenylketonuria.

View Article and Find Full Text PDF

Biology experiments in space seek to increase our understanding of what happens to life beyond Earth and how we can safely send life beyond Earth. Spaceflight is associated with many (mal)adaptations in physiology, including decline in musculoskeletal, cardiovascular, vestibular, and immune systems. Biological experiments in space are inherently challenging to implement.

View Article and Find Full Text PDF
Article Synopsis
  • Mitochondrial problems can hurt muscle health and lead to muscle wasting.
  • The study used tiny worms to show that issues in the mitochondria cause muscle damage and paralysis by affecting collagen, a protein that helps muscles stay strong.
  • Fixing the muscle damage can happen by controlling certain proteins and calcium levels, meaning that keeping the muscles healthy is really important!
View Article and Find Full Text PDF