Am J Physiol Heart Circ Physiol
October 2024
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. Excessive stimulation of the inositol (1,4,5)-trisphosphate (IP) signaling pathway has been linked to AF through abnormal calcium handling. However, little is known about the mechanisms involved in this process.
View Article and Find Full Text PDFEndolysosomes (EL) are known for their role in regulating both intracellular trafficking and proteostasis. EL facilitate the elimination of damaged membranes, protein aggregates, membranous organelles and play an important role in calcium signaling. The specific role of EL in cardiac atrial fibrillation (AF) is not well understood.
View Article and Find Full Text PDFSpontaneous calcium release by ryanodine receptors (RyRs) due to intracellular calcium overload results in delayed afterdepolarizations, closely associated with life-threatening arrhythmias. In this regard, inhibiting lysosomal calcium release by two-pore channel 2 (TPC2) knockout has been shown to reduce the incidence of ventricular arrhythmias under β-adrenergic stimulation. However, mechanistic investigations into the role of lysosomal function on RyR spontaneous release remain missing.
View Article and Find Full Text PDFAtrial arrhythmias, such as atrial fibrillation (AF), are a major mortality risk and a leading cause of stroke. The IP signalling pathway has been proposed as an atrial-specific target for AF therapy, and atrial IP signalling has been linked to the activation of calcium sensitive adenylyl cyclases AC1 and AC8. We investigated the involvement of AC1 in the response of intact mouse atrial tissue and isolated guinea pig atrial and sino-atrial node (SAN) cells to the α-adrenoceptor agonist phenylephrine (PE) using the selective AC1 inhibitor ST034307.
View Article and Find Full Text PDFThe importance of lysosomes in cardiac physiology and pathology is well established, and evidence for roles in calcium signaling is emerging. We describe a label-free proteomics method suitable for small cardiac tissue biopsies based on density-separated fractionation, which allows study of endolysosomal (EL) proteins. Density gradient fractions corresponding to tissue lysate; sarcoplasmic reticulum (SR), mitochondria (Mito) (1.
View Article and Find Full Text PDFInteractions along the neuro-cardiac axis are being explored with regard to their involvement in cardiac diseases, including catecholaminergic polymorphic ventricular tachycardia, hypertension, atrial fibrillation, long QT syndrome and sudden death in epilepsy. Interrogation of the pathophysiology and pathogenesis of neuro-cardiac diseases in animal models present challenges resulting from species differences, phenotypic variation, developmental effects and limited availability of data relevant at both the tissue and cellular level. By contrast, tissue-engineered models containing cardiomyocytes and peripheral sympathetic and parasympathetic neurons afford characterization of cellular- and tissue-level behaviours while maintaining precise control over developmental conditions, cellular genotype and phenotype.
View Article and Find Full Text PDFSynaptic plasticity is defined as the ability of synapses to change their strength of transmission. Plasticity of synaptic connections in the brain is a major focus of neuroscience research, as it is the primary mechanism underpinning learning and memory. Beyond the brain however, plasticity in peripheral neurons is less well understood, particularly in the neurons innervating the heart.
View Article and Find Full Text PDFCaveolae are signal transduction centers, yet their subcellular distribution and preservation in cardiac myocytes after cell isolation are not well documented. Here, we quantify caveolae located within 100 nm of the outer cell surface membrane in rabbit single-ventricular cardiomyocytes over 8 h post-isolation and relate this to the presence of caveolae in intact tissue. Hearts from New Zealand white rabbits were either chemically fixed by coronary perfusion or enzymatically digested to isolate ventricular myocytes, which were subsequently fixed at 0, 3, and 8 h post-isolation.
View Article and Find Full Text PDFNicotinic Acid Adenine Dinucleotide Phosphate (NAADP) stimulates calcium release from acidic stores such as lysosomes and is a highly potent calcium-mobilising second messenger. NAADP plays an important role in calcium signalling in the heart under basal conditions and following β-adrenergic stress. Nevertheless, the spatial interaction of acidic stores with other parts of the calcium signalling apparatus in cardiac myocytes is unknown.
View Article and Find Full Text PDFCardiac arrhythmias are one of the most frequent causes of death worldwide. A popular biological model used to study arrhythmogenesis is the cultured cardiac cell monolayer, which provides a good trade-off between physiological relevance and experimental access. Excitation wave patterns are imaged using high-bandwidth detectors, producing large data sets that are typically analyzed manually.
View Article and Find Full Text PDFCardiac architecture is fundamental to cardiac function and can be assessed non-invasively with diffusion tensor imaging (DTI). Here, we aimed to overcome technical challenges in ex vivo DTI in order to extract fine anatomical details and to provide novel insights in the 3D structure of the heart. An integrated set of methods was implemented in ex vivo rat hearts, including dynamic receiver gain adjustment, gradient system scaling calibration, prospective adjustment of diffusion gradients, and interleaving of diffusion-weighted and non-diffusion-weighted scans.
View Article and Find Full Text PDFMyocardial microstructure and its macroscopic materialisation are fundamental to the function of the heart. Despite this importance, characterisation of cellular features at the organ level remains challenging, and a unifying description of the structure of the heart is still outstanding. Here, we optimised diffusion tensor imaging data to acquire high quality data in ex vivo rabbit hearts in slack and contractured states, approximating diastolic and systolic conditions.
View Article and Find Full Text PDFIn nature, macroscopic excitation waves are found in a diverse range of settings including chemical reactions, metal rust, yeast, amoeba and the heart and brain. In the case of living biological tissue, the spatiotemporal patterns formed by these excitation waves are different in healthy and diseased states. Current electrical and pharmacological methods for wave modulation lack the spatiotemporal precision needed to control these patterns.
View Article and Find Full Text PDFBoth biomedical research and clinical practice rely on complex datasets for the physiological and genetic characterization of human hearts in health and disease. Given the complexity and variety of approaches and recordings, there is now growing recognition of the need to embed computational methods in cardiovascular medicine and science for analysis, integration and prediction. This paper describes a Workshop on Computational Cardiovascular Science that created an international, interdisciplinary and inter-sectorial forum to define the next steps for a human-based approach to disease supported by computational methodologies.
View Article and Find Full Text PDFAims: Cardiac histo-anatomical organization is a major determinant of function. Changes in tissue structure are a relevant factor in normal and disease development, and form targets of therapeutic interventions. The purpose of this study was to test tools aimed to allow quantitative assessment of cell-type distribution from large histology and magnetic resonance imaging- (MRI) based datasets.
View Article and Find Full Text PDFRemote focussing microscopy allows sharp, in-focus images to be acquired at high speed from outside of the focal plane of an objective lens without any agitation of the specimen. However, without careful optical alignment, the advantages of remote focussing microscopy could be compromised by the introduction of depth-dependent scaling artifacts. To achieve an ideal alignment in a point-scanning remote focussing microscope, the lateral (XY) scan mirror pair must be imaged onto the back focal plane of both the reference and imaging objectives, in a telecentric arrangement.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
April 2014
Although the application of a 9-V battery to the epicardial surface is a simple method of ventricular fibrillation induction, the fundamental mechanisms underlying this process remain unstudied. We used a combined experimental and modelling approach to understand how the interaction of direct current (DC) from a battery may induce reentrant activity within rabbit ventricles and its dependence on battery application timing and duration. A rabbit ventricular computational model was used to simulate 9-V battery stimulation for different durations at varying onset times during sinus rhythm.
View Article and Find Full Text PDFBackground: Anisotropy of conduction facilitates re-entry and is, therefore, a key determinant of the stability of atrial fibrillation (AF). Little is known about the effect of AF on atrial bundle architecture and consequent changes in anisotropy of conduction and maintenance of AF.
Methods And Results: Direct contact mapping was performed in left atria of goats with acute AF (n=6) or persistent AF (n=5).
Rationale: Sarcomere length (SL) is a key indicator of cardiac mechanical function, but current imaging technologies are limited in their ability to unambiguously measure and characterize SL at the cell level in intact, living tissue.
Objective: We developed a method for measuring SL and regional cell orientation using remote focusing microscopy, an emerging imaging modality that can capture light from arbitrary oblique planes within a sample.
Methods And Results: We present a protocol that unambiguously and quickly determines cell orientation from user-selected areas in a field of view by imaging 2 oblique planes that share a common major axis with the cell.
Aim: The human coronary tree is commonly assumed to have two roots: the left and right coronary arteries (LCA and RCA, respectively). However, a third coronary artery (TCA) has been observed in humans and animals, usually arising from the right anterior aortic sinus near the RCA. Using high-resolution magnetic resonance imaging, we identified TCA prevalence and characteristics in rabbit and human hearts.
View Article and Find Full Text PDFDeformation and wall-thickening of ventricular myocardium are essential for cardiac pump function. However, insight into the histo-anatomical basis for cardiac tissue re-arrangement during contraction is limited. In this report, we describe dynamic changes in regionally prevailing cardiomyocyte (fibre) and myolaminar (sheet) orientations, using Diffusion Tensor Imaging (DTI) of ventricles in the same living heart in two different mechanical states.
View Article and Find Full Text PDFChemical tissue fixation, followed by embedding in either agarose or Fomblin, is common practice in time-intensive MRI studies of ex vivo biological samples, and is required to prevent tissue autolysis and sample motion. However, the combined effect of fixation and sample embedding may alter tissue structure and MRI properties. We investigated the progressive changes in T(1) and T(2) relaxation times, and the arrangement of locally prevailing cardiomyocyte orientation determined using diffusion tensor imaging, in embedded ex vivo rat hearts fixed using Karnovsky's solution (glutaraldehyde-formaldehyde mix).
View Article and Find Full Text PDFA second right coronary artery is not at all unusual, as described here from Oxford, England.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
March 2011
Annulus manual segmentation is an important tool for the study of valve anatomy and physiology, for the four main valves of the heart (mitral, tricuspid, aortic and pulmonary). In this paper we review two traditional manual segmentation approaches: slice-by-slice and interpolating a sparse set of landmarks with a spline curve. We propose a new Spline Tool for the open source software platform Seg3D, that is fast and improves spatial coherence by providing visual feedback of the segmentation in real time.
View Article and Find Full Text PDFRecent advances in magnetic resonance (MR) imaging technology have unveiled a wealth of information regarding cardiac histoanatomical complexity. However, methods to faithfully translate this level of fine-scale structural detail into computational whole ventricular models are still in their infancy, and, thus, the relevance of this additional complexity for simulations of cardiac function has yet to be elucidated. Here, we describe the development of a highly detailed finite-element computational model (resolution: approximately 125 microm) of rabbit ventricles constructed from high-resolution MR data (raw data resolution: 43 x 43 x 36 microm), including the processes of segmentation (using a combination of level-set approaches), identification of relevant anatomical features, mesh generation, and myocyte orientation representation (using a rule-based approach).
View Article and Find Full Text PDF