During the transition from neonate to adulthood, brain maturation establishes coherence between behavioral states-wakefulness, non-rapid eye movement, and rapid eye movement sleep. In animal models few studies have characterized and analyzed cerebral rhythms and the sleep-wake cycle in early ages, in relation to adulthood. Since the analysis of sleep in early ages can be used as a predictive model of brain development and the subsequent emergence of neural disturbances in adults, we performed a study on late neonatal mice, an age not previously characterized.
View Article and Find Full Text PDFThe neurological devastation of neurodegenerative and cerebrovascular diseases reinforces our perseverance to find advanced treatments to deal with these fatal pathologies. High-performance preclinical results have failed at clinical level, as it has been the case for a wide variety of neuroprotective agents and cell-based therapies employed to treat high prevalent brain pathologies such as stroke, Alzheimer's and Parkinson's diseases. An unquestionable reality is the current absence of effective therapies to neuroprotect the brain, to arrest neurodegeneration and rewire the impaired brain circuits.
View Article and Find Full Text PDF