This study aimed to evaluate the tissue reaction of ethylene-vinyl acetate (EVA) in 4 different compositions and processing: EVA foamed at high pressure with ultrasound (EVACU); EVA with 15% starch foamed at high pressure with ultrasound (EVAMCU); EVA with 15% starch foamed at high pressure without ultrasound and EVA foamed at high pressure without ultrasound as future use as a porous scaffold. Scanning electron microscopy images showed the influence of starch, reducing the diameter of pores. The number of open pores was also reduced with the addition of starch.
View Article and Find Full Text PDFBackground: The hospital environment is susceptible to bacterial contamination along with survival in fomites and surfaces, allowing dissemination of potential pathogenic strains. The present research aimed to evaluate the influence of biological fluids in bacterial viability on fomites and surfaces commonly present in nosocomial environment.
Methods: Four different fomites and surfaces (ceramic floor, cotton fabric fragments and synthetic fibers, and eggcrate foam mattress) were contaminated with potential pathogens (Staphylococcus aureus, Escherichia coli, Enterococcus faecalis, Pseudomonas aeruginosa, and Klebsiella pneumoniae), then submitted to influence of biological fluids (blood, urine, artificial saliva).
Cytotoxicity and subcutaneous tissue reaction of innovative blends composed by polyvinylidene fluoride and polyvinylidene fluoride-trifluoroethylene associated with natural polymers (natural rubber and native starch) forming membranes were evaluated, aiming its applications associated with bone regeneration. Cytotoxicity was evaluated in mouse fibroblasts culture cells (NIH3T3) using trypan blue staining. Tissue response was in vivo evaluated by subcutaneous implantation of materials in rats, taking into account the presence of necrosis and connective tissue capsule around implanted materials after 7, 14, 21, 28, 35, 60, and 100 days of surgery.
View Article and Find Full Text PDF