Publications by authors named "Rebeca Alonso-Monge"

Candidaalbicans normally colonizes the human gastrointestinal tract as a commensal. Studying fungal factors involved in colonizing the mammalian gastrointestinal tract requires mouse models with altered microbiota. We have obtained strains of C.

View Article and Find Full Text PDF

Candida albicans is a pathobiont in humans that forms part of the mycobiota in healthy individuals and can cause different pathologies upon alterations of the host defenses. The mammalian gut is clinically relevant as this niche is the most common pool for bloodstream-derived infections. The ability of C.

View Article and Find Full Text PDF

The transcriptional master regulator of the white opaque transition of is important for the adaptation to the commensal lifestyle in the mammalian gut, a major source of invasive candidiasis. We have generated cells that overproduce Wor1 in mutants defective in the Hog1 MAP kinase, defective in several stress responses and unable to colonize the mice gut. overexpression allows to be established as a commensal in the murine gut in a commensalism model and even compete with wild-type cells for establishment.

View Article and Find Full Text PDF

is a commensal yeast that inhabits the gastrointestinal tract of humans; increased colonization of this yeast in this niche has implicated the master regulator of the white-opaque transition, Wor1, by mechanisms not completely understood. We have addressed the role that this transcription factor has on commensalism by the characterization of strains overexpressing this gene. We show that overexpression causes an alteration of the total lipid content of the fungal cell and significantly alters the composition of structural and reserve molecular species lipids as determined by lipidomic analysis.

View Article and Find Full Text PDF

The commensal and opportunistic pathogen is an important cause of fungal diseases in humans, with the gastrointestinal tract being an important reservoir for its infections. The study of the mechanisms promoting the commensal state has attracted considerable attention over the last few years, and several studies have focused on the identification of the intestinal human mycobiota and the characterization of genes involved in its establishment as a commensal. In this work, we have barcoded 114 clinical isolates to identify strains with an enhanced fitness in a murine gastrointestinal commensalism model.

View Article and Find Full Text PDF

is a commensal yeast that inhabits the gastrointestinal tract of humans. The master regulator of the white-opaque transition has been implicated in the adaptation to this commensal status. A proteomic analysis of cells overexpressing this transcription factor () suggested an altered metabolism of carbon sources and a phenotypic analysis confirmed this alteration.

View Article and Find Full Text PDF

As opportunistic pathogen, adapts to different environmental conditions and its corresponding stress. The Hog1 MAPK (Mitogen Activated Protein Kinase) was identified as the main MAPK involved in the response to osmotic stress. It was later shown that this MAPK is also involved in the response to a variety of stresses and therefore, its role in virulence, survival to phagocytes and establishment as commensal in the mouse gastrointestinal tract was reported.

View Article and Find Full Text PDF

In fungi, the Mitogen-Activated Protein kinase (MAPK) pathways sense a wide variety of environmental stimuli, leading to cell adaptation and survival. The HOG pathway plays an essential role in the pathobiology of , including the colonization of the gastrointestinal tract in a mouse model, virulence, and response to stress. Here, we examined the role of Hog1 in the response to the clinically relevant antifungal Micafungin (MF), whose minimum inhibitory concentration (MIC) was identical in the parental strain (RM100) and in the isogenic homozygous mutant (0.

View Article and Find Full Text PDF

is an important human fungal pathogen responsible for tens of millions of infections as well as hundreds of thousands of severe life-threatening infections each year. MAP kinase (MAPK) signal transduction pathways facilitate the sensing and adaptation to external stimuli and control the expression of key virulence factors such as the yeast-to-hypha transition, the biogenesis of the cell wall, and the interaction with the host. In the present study, we have combined molecular approaches and infection biology to analyse the role of MAPK pathways during an epithelial invasion.

View Article and Find Full Text PDF

The HOG MAP kinase pathway plays a crucial role in the response to different stresses in the opportunistic pathogen Candida albicans. The polyene amphotericin B (AMB) has been reported to trigger oxidative stress in several pathogenic fungi, including C. albicans.

View Article and Find Full Text PDF

displays the ability to adapt to a wide variety of environmental conditions, triggering signaling pathways and transcriptional regulation. Sko1 is a transcription factor that was previously involved in early hypoxic response, cell wall remodeling, and stress response. In the present work, the role of mutant in o and studies was explored.

View Article and Find Full Text PDF

Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-Cas systems have emerged as a powerful tool for genome manipulation. Class 2 type II CRISPR/ is so far the most studied system and has been implemented in many biological systems such as mammalian cells, plants, fungi and bacteria. Fungi are important causes of human diseases worldwide.

View Article and Find Full Text PDF

Clustered regularly interspaced short palindromic repeat (CRISPR) methodology is not only an efficient tool in gene editing but also an attractive platform to facilitate DNA, RNA, and protein interactions. We describe here the implementation of a CRISPR-based system to regulate expression in the clinically important yeast By fusing an allele of Cas9 devoid of nuclease activity to a transcriptional repressor (Nrg1) or activator (Gal4), we were able to show specific repression or activation of the tester gene , encoding the cytosolic catalase. We generated strains where a 1.

View Article and Find Full Text PDF

Certain yeasts secrete peptides known as killer toxins or mycocins with a deleterious effect on sensitive yeasts or filamentous fungi, a common phenomenon in environmental species. In a recent work, different () strains isolated from a wide variety of cheeses were identified as producing killer toxins active against and . We have analyzed the killer activity of these toxins in mutants defective in MAPK signaling pathways and found that the lack of the MAPK Hog1 (but not Cek1 or Mkc1) renders cells hypersensitive to mycocins while mutants lacking other upstream elements of the pathway behave as the wild type strain.

View Article and Find Full Text PDF

The transcriptional regulator Wor1 has been shown to induce the GUT transition, an environmentally triggered process that increases the fitness of in the mouse gastrointestinal tract. We have developed strains where the expression of this gene is driven from the strong and tightly regulated tetracycline promoter. These cells retain the main characteristics reported for GUT cells albeit they show defects in the initial stages of colonization.

View Article and Find Full Text PDF

Arsenic is a toxic metalloid widespread in nature. Recently, it has been demonstrated a main role of the transcription factor Pho4 in the acquisition of tolerance to arsenic-derived compounds, arsenite and arsenate in Candida albicans. Here, the effect of these compounds on this pathogenic yeast has been analyzed.

View Article and Find Full Text PDF

Eukaryotic cell cycle progression in response to environmental conditions is controlled via specific checkpoints. Signal transduction pathways mediated by MAPKs play a crucial role in sensing stress. For example, the canonical MAPKs Mkc1 (of the cell wall integrity pathway), and Hog1 (of the HOG pathway), are activated upon oxidative stress.

View Article and Find Full Text PDF

Aim: To investigate the role of Cat1 overproduction in Candida albicans.

Materials & Methods: Strains overproducing the CAT1 gene were constructed.

Results: Cells overproducing CAT1 were found to be more resistant to some oxidants and mammalian phagocytic cells.

View Article and Find Full Text PDF

The Pho4 transcription factor is required for growth under low environmental phosphate concentrations in Saccharomyces cerevisiae. A characterization of Candida albicans pho4 mutants revealed that these cells are more susceptible to both osmotic and oxidative stress and that this effect is diminished in the presence of 5% CO2 or anaerobiosis, reflecting the relevance of oxygen metabolism in the Pho4-mediated response. A pho4 mutant was as virulent as wild type strain when assayed in the Galleria mellonella infection model and was even more resistant to murine macrophages in ex vivo killing assays.

View Article and Find Full Text PDF

The cell wall integrity pathway (CWI) plays an important role in the biogenesis of the cell wall in Candida albicans and other fungi. In the present work, the C. albicans MKK2 gene that encodes the putative MAPKK of this pathway was deleted in different backgrounds and the phenotypes of the resultant mutants were characterised.

View Article and Find Full Text PDF

Arsenate (As (V)) is the dominant form of the toxic metalloid arsenic (As). Microorganisms have consequently developed mechanisms to detoxify and tolerate this kind of compounds. In the present work, we have explored the arsenate sensing and signaling mechanisms in the pathogenic fungus Candida albicans.

View Article and Find Full Text PDF

Different signal transduction pathways mediated by MAP kinases have been described in Candida albicans. These pathways sense different stimuli and, therefore, elaborate specific responses. Hog1 was identified as the MAPK that is primarily involved in stress response and virulence, while Cek1 was more specific to cell wall biogenesis, mating and biofilm formation.

View Article and Find Full Text PDF

MAPK pathways are conserved and complex mechanisms of signaling in eukaryotic cells. These pathways mediate adaptation to different stress conditions by a core kinase cascade that perceives changes in the environment by different upstream elements and mediates adaptation through transcription factors. In the present work, the transmembrane protein Opy2 has been identified and functionally characterized in Candida albicans.

View Article and Find Full Text PDF