Objectives: Intubation is a common procedure in acute hypoxemic respiratory failure (AHRF), with minimal evidence to guide decision-making. We conducted a survey of when to intubate patients with AHRF to measure the influence of clinical variables on intubation decision-making and quantify variability.
Design: Factorial vignette-based survey asking "Would you recommend intubation?" Respondents selected an ordinal recommendation from a 5-point scale ranging from "Definite no" to "Definite yes" for up to ten randomly allocated vignettes.
The nucleocapsid protein (N) of SARS-CoV-2 is essential for virus replication, genome packaging, evading host immunity, and virus maturation. N is a multidomain protein composed of an independently folded monomeric N-terminal domain that is the primary site for RNA binding and a dimeric C-terminal domain that is essential for efficient phase separation and condensate formation with RNA. The domains are separated by a disordered Ser/Arg-rich region preceding a self-associating Leu-rich helix.
View Article and Find Full Text PDFIt was recently reported that values of the transition heat capacities, as measured by differential scanning calorimetry, for two globular proteins and a short DNA hairpin in NaCl buffer are essentially equivalent, at equal concentrations (mg/mL). To validate the broad applicability of this phenomenon, additional evidence for this equivalence is presented that reveals it does not depend on DNA sequence, buffer salt, or transition temperature (Tm). Based on the equivalence of transition heat capacities, a calorimetric method was devised to determine protein concentrations in pure and complex solutions.
View Article and Find Full Text PDFWhile foam fractionation (FF) process has emerged as a promising technology for removal of per- and polyfluoroalkyl substances (PFASs) from contaminated groundwater, management of the resulting foam concentrates with elevated concentrations of PFASs (e.g., >1 g/L) remains a challenge.
View Article and Find Full Text PDFIt was recently reported for two globular proteins and a short DNA hairpin in NaCl buffer that values of the transition heat capacities, and , for equal concentrations (mg/mL) of DNA and proteins, are essentially equivalent (differ by less than 1%). Additional evidence for this equivalence is presented that reveals this phenomenon does not depend on DNA sequence, buffer salt, or T. Sequences of two DNA hairpins were designed to confer a near 20°C difference in their T's.
View Article and Find Full Text PDFDysferlin is a large membrane protein found most prominently in striated muscle. Loss of dysferlin activity is associated with reduced exocytosis, abnormal intracellular Ca2+ and the muscle diseases limb-girdle muscular dystrophy and Miyoshi myopathy. The cytosolic region of dysferlin consists of seven C2 domains with mutations in the C2A domain at the N-terminus resulting in pathology.
View Article and Find Full Text PDFBackground: Failure rates up to 14% have been reported after arthroscopic posterior capsulolabral repair. It is unknown if revision arthroscopic posterior capsulolabral stabilization has inferior restoration of stability and return to sport when compared with primary repair. Optimal management of failed posterior capsulolabral stabilization is unknown.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2023
Aneuploidy syndromes impact multiple organ systems but understanding of tissue-specific aneuploidy effects remains limited-especially for the comparison between peripheral tissues and relatively inaccessible tissues like brain. Here, we address this gap in knowledge by studying the transcriptomic effects of chromosome X, Y, and 21 aneuploidies in lymphoblastoid cell lines, fibroblasts and iPSC-derived neuronal cells (LCLs, FCL, and iNs, respectively). We root our analyses in sex chromosome aneuploidies, which offer a uniquely wide karyotype range for dosage effect analysis.
View Article and Find Full Text PDF14-3-3 proteins are dimeric hubs that bind hundreds of phosphorylated "clients" to regulate their function. Installing stable, functional mimics of phosphorylated amino acids into proteins offers a powerful strategy to study 14-3-3 function in cellular-like environments, but a previous genetic code expansion (GCE) system to translationally install nonhydrolyzable phosphoserine (nhpSer), with the γ-oxygen replaced with CH, site-specifically into proteins has seen limited usage. Here, we achieve a 40-fold improvement in this system by engineering into a six-step biosynthetic pathway that produces nhpSer from phosphoenolpyruvate.
View Article and Find Full Text PDFLC8, a ubiquitous and highly conserved hub protein, binds over 100 proteins involved in numerous cellular functions, including cell death, signaling, tumor suppression, and viral infection. LC8 binds intrinsically disordered proteins (IDPs), and although several of these contain multiple LC8 binding motifs, the effects of multivalency on complex formation are unclear. Drosophila ASCIZ has seven motifs that vary in sequence and inter-motif linker lengths, especially within subdomain QT2-4 containing the second, third, and fourth LC8 motifs.
View Article and Find Full Text PDFUnderstanding the structure-function relationships of macromolecules, such as proteins, at the molecular level is vital for biomedicine and modern drug discovery. To date, X-ray crystallography remains the most successful method for solving three-dimensional protein structures at atomic resolution. With recent advances in serial crystallography, either using X-ray free electron lasers (XFELs) or synchrotron light sources, protein crystallography has progressed to the next frontier, where the ability to acquire time-resolved data provides important mechanistic insights into the behavior of biological molecules at room temperature.
View Article and Find Full Text PDFMacrophage distribution density is tightly regulated within the body, yet the importance of macrophage crowding during culture is largely unstudied. Using a human induced pluripotent stem cell (iPSC)-derived macrophage model of tissue resident macrophages, we characterize how increasing macrophage culture density changes their morphology and phenotype before and after inflammatory stimulation. In particular, density drives changes in macrophage inflammatory cytokine and chemokine secretion in both resting and activated states.
View Article and Find Full Text PDFAs the only major retrograde transporter along microtubules, cytoplasmic dynein plays crucial roles in the intracellular transport of organelles and other cargoes. Central to the function of this motor protein complex is dynein intermediate chain (IC), which binds the three dimeric dynein light chains at multivalent sites, and dynactin p150 and nuclear distribution protein (NudE) at overlapping sites of its intrinsically disordered N-terminal domain. The disorder in IC has hindered cryo-electron microscopy and X-ray crystallography studies of its structure and interactions.
View Article and Find Full Text PDFPaints are widely used in indoor settings yet there are no data for volatile per- and polyfluoroalkyl substances (PFAS) for paints or knowledge if paints are potentially important sources of human exposure to PFAS. Different commercial paints ( = 27) were collected from local hardware stores and analyzed for volatile PFAS by gas chromatography-mass spectrometry (GC-MS), nonvolatile PFAS by liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-qTOF), and total fluorine by F nuclear magnetic resonance spectroscopy (NMR). Diluted paint required clean up to remove 6:2 fluorotelomer phosphate diester (diPAP), which thermally transforms into 6:2 FTOH at 280 °C (GC inlet temperature).
View Article and Find Full Text PDFTumor suppressor p53 binding protein 1 (53BP1) is a scaffolding protein involved in poly-ADP ribose polymerase inhibitor hypersensitivity in BRCA1-negative cancers. 53BP1 plays a critical role in the DNA damage response and relies on its oligomerization to create foci that promote repair of DNA double-strand breaks. Previous work shows that mutation of either the oligomerization domain or the dynein light chain 8 (LC8)-binding sites of 53BP1 results in reduced accumulation of 53BP1 at double-strand breaks.
View Article and Find Full Text PDFPhosphoserine (pSer) sites are primarily located within disordered protein regions, making it difficult to experimentally ascertain their effects on protein structure and function. Therefore, the production of N- (and C)-labeled proteins with site-specifically encoded pSer for NMR studies is essential to uncover molecular mechanisms of protein regulation by phosphorylation. While genetic code expansion technologies for the translational installation of pSer in Escherichia coli are well established and offer a powerful strategy to produce site-specifically phosphorylated proteins, methodologies to adapt them to minimal or isotope-enriched media have not been described.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2022
Stability constrains evolution. While much is known about constraints on destabilizing mutations, less is known about the constraints on stabilizing mutations. We recently identified a mutation in the innate immune protein S100A9 that provides insight into such constraints.
View Article and Find Full Text PDFThe slow pace of discovery of bioactive natural products can be attributed to the difficulty in rapidly identifying them in complex mixtures such as plant extracts. To overcome these hurdles, we explored the utility of two machine learning techniques, i.e.
View Article and Find Full Text PDFBackground: Over 100,000 sleeve gastrectomy procedures are performed annually in the USA. Despite technological advances, postoperative bleeding and gastric staple line leak are complications of this procedure. We analyzed patient-specific and perioperative factors to determine their association with these complications.
View Article and Find Full Text PDFInstalling stable, functional mimics of phosphorylated amino acids into proteins offers a powerful strategy to study protein regulation. Previously, a genetic code expansion (GCE) system was developed to translationally install non-hydrolyzable phosphoserine (nhpSer), with the γ-oxygen replaced with carbon, but it has seen limited usage. Here, we achieve a 40-fold improvement in this system by engineering into a biosynthetic pathway that produces nhpSer from the central metabolite phosphoenolpyruvate.
View Article and Find Full Text PDFThe human parainfluenza virus 3 (HPIV3) poses a risk for pneumonia development in young children and immunocompromised patients. To investigate mechanisms of HPIV3 pathogenesis, we characterized the association state and host protein interactions of HPIV3 phosphoprotein (HPIV3 P), an indispensable viral polymerase cofactor. Sequence analysis and homology modeling predict that HPIV3 P possesses a long, disordered N-terminal tail (P) a coiled-coil multimerization domain (P), similar to the well-characterized paramyxovirus phosphoproteins from measles and Sendai viruses.
View Article and Find Full Text PDFA significant number of proteins possess sizable intrinsically disordered regions (IDRs). Due to the dynamic nature of IDRs, NMR spectroscopy is often the tool of choice for characterizing these segments. However, the application of NMR to IDRs is often hindered by their instability, spectral overlap and resonance assignment difficulties.
View Article and Find Full Text PDF