Publications by authors named "Reakasame Supachai"

Animal models are important tools to investigate the pathogenesis and develop treatment strategies for breast cancer in humans. In this study, we developed a new three-dimensional in vivo arteriovenous loop model of human breast cancer with the aid of biodegradable materials, including fibrin, alginate, and polycaprolactone. We examined the in vivo effects of various matrices on the growth of breast cancer cells by imaging and immunohistochemistry evaluation.

View Article and Find Full Text PDF

This study used methylcellulose (MC) to improve the printability of the alginate dialdehyde-gelatin (ADA-GEL) based bioink. The printability as well as the capability to maintain shape fidelity of ADA-GEL could be enhanced by the addition of 9% (w/v) MC. Moreover, the properties of the ink crosslinked with Ca and Ba were investigated.

View Article and Find Full Text PDF

The effect of the incorporation of 45S5 bioactive glass (BG) microparticles (mean particle size ≈ 2 µm) on the fabrication and physicochemical properties of alginate dialdehyde-gelatin hydrogel capsules is investigated. The addition of BG particles decreases the hydrogel gelation time by ≈79% and 91% for the samples containing 0.1% w/v and 0.

View Article and Find Full Text PDF

Biofabrication is a rapidly evolving field whose main goal is the manufacturing of three-dimensional (3D) cell-laden constructs that closely mimic tissues and organs. Despite recent advances on materials and techniques directed toward the achievement of this goal, several aspects such as tissue vascularization and prolonged cell functionality are limiting bench-to-bedside translation. Extrusion-based 3D bioprinting has been devised as a promising biofabrication technology to overcome these limitations, due to its versatility and wide availability.

View Article and Find Full Text PDF

Alginate dialdehyde-gelatin (ADA-GEL) hydrogels have been reported to be suitable matrices for cell encapsulation. In general, application of ADA-GEL as bioink has been limited to planar structures due to its low viscosity. In this work, ring shaped constructs of ADA-GEL hydrogel were fabricated by casting the hydrogel into sacrificial molds which were 3D printed from 9% methylcellulose and 5% gelatin.

View Article and Find Full Text PDF

Oxidized alginate hydrogels are appealing alternatives to natural alginate due to their favourable biodegradability profiles and capacity to self-crosslink with amine containing molecules facilitating functionalization with extracellular matrix cues, which enable modulation of stem cell fate, achieve highly viable 3-D cultures, and promote cell growth. Stem cell metabolism is at the core of cellular fate (proliferation, differentiation, death) and metabolomics provides global metabolic signatures representative of cellular status, being able to accurately identify the quality of stem cell differentiation. Herein, umbilical cord blood mesenchymal stem cells (UCB MSCs) were encapsulated in novel oxidized alginate hydrogels functionalized with the glycine-histidine-lysine (GHK) peptide and differentiated towards the osteoblastic lineage.

View Article and Find Full Text PDF

Microcapsules based on alginate-keratin, alginate dialdehyde (ADA)-keratin and ADA-keratin-45S5 bioactive glass (BG) were successfully prepared. The samples were characterized by light microscopy, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The results showed that ADA-based materials possess higher degradation rate compared to alginate-based materials.

View Article and Find Full Text PDF

Oxidized alginate (OA)-based hydrogels have drawn considerable attention as biodegradable materials for tissue engineering applications. OA possesses a faster degradation rate and contains more reactive groups compared to native alginate. This review summarizes the research publications reporting the development of OA-based hydrogels for tissue engineering applications including bone, cartilage, blood vessel, cornea, and other soft tissues, highlighting OA key properties and processing approaches.

View Article and Find Full Text PDF

Tissue-engineered scaffolds require an effective colonization with cells. Superparamagnetic iron oxide nanoparticles (SPIONs) can enhance cell adhesion to matrices by magnetic cell seeding. We investigated the possibility of improving cell attachment and growth on different alginate-based hydrogels using fibroblasts and endothelial cells (ECs) loaded with SPIONs.

View Article and Find Full Text PDF